Abstract
AbstractThis article is about polynomial maps with a certain symmetry and/or antisymmetry in their Jacobians, and whether the Jacobian Conjecture is satisfied for such maps, or whether it is sufficient to prove the Jacobian Conjecture for such maps. For instance, we show that it suffices to prove the Jacobian conjecture for polynomial maps x + H over ℂ such that satisfies all symmetries of the square, where H is homogeneous of arbitrary degree d ≥ 3.
Reference12 articles.
1. de Bondt M., Quasi-translations and counterexamples to the homogeneous dependence problem, Proc. Amer. Math. Soc., 2006, 134(10), 2849–2856
2. de Bondt M.C., Homogeneous Keller Maps, PhD thesis, Radboud University Nijmegen, 2009, available at http://webdoc.ubn.ru.nl/mono/b/bondt_m_de/homokema.pdf
3. de Bondt M., Constant polynomial Hessian determinants in dimension three, preprint available at http://arxiv.org/abs/1203.6605
4. de Bondt M., van den Essen A., Singular Hessians, J. Algebra, 2004, 282(1), 195–204
5. de Bondt M., van den Essen A., A reduction of the Jacobian Conjecture to the symmetric case, Proc. Amer. Math. Soc., 2005, 133(8), 2201–2205
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献