Author:
Wang JinRong,Zhou Yong,Fečkan Michal
Abstract
AbstractIn this paper, we develop the approach and techniques of [Boucherif A., Precup R., Semilinear evolution equations with nonlocal initial conditions, Dynam. Systems Appl., 2007, 16(3), 507–516], [Zhou Y., Jiao F., Nonlocal Cauchy problem for fractional evolution equations, Nonlinar Anal. Real World Appl., 2010, 11(5), 4465–4475] to deal with nonlocal Cauchy problem for semilinear fractional order evolution equations. We present two new sufficient conditions on existence of mild solutions. The first result relies on a growth condition on the whole time interval via Schaefer fixed point theorem. The second result relies on a growth condition splitted into two parts, one for the subinterval containing the points associated with the nonlocal conditions, and the other for the rest of the interval via O’Regan fixed point theorem.
Reference37 articles.
1. Baleanu D., Machado J.A.T., Luo A.C.J. (Eds.), Fractional Dynamics and Control, Springer, New York, 2012
2. Boucherif A., Precup R., On the nonlocal initial value problem for first order differential equations, Fixed Point Theory, 2003, 4(2), 205–212
3. Boucherif A., Precup R., Semilinear evolution equations with nonlocal initial conditions, Dynam. Systems Appl., 2007, 16(3), 507–516
4. Boulite S., Idrissi A., Maniar L., Controllability of semilinear boundary problems with nonlocal initial conditions, J. Math. Anal. Appl., 2006, 316(2), 566–578
5. Byszewski L., Theorems about the existence and uniqueness of solutions of a semilinear evolution nonlocal Cauchy problem, J. Math. Anal. Appl., 1991, 162(2), 494–505
Cited by
24 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献