Protein Disulfide Isomerase Superfamily in Disease and the Regulation of Apoptosis

Author:

Grek C.,Townsend D.M.

Abstract

AbstractCellular homeostasis requires the balance of a multitude of signaling cascades that are contingent upon the essential proteins being properly synthesized, folded and delivered to appropriate subcellular locations. In eukaryotic cells the endoplasmic reticulum (ER) is a specialized organelle that is the central site of synthesis and folding of secretory, membrane and a number of organelletargeted proteins. The integrity of protein folding is enabled by the presence of ATP, Ca++, molecular chaperones, as well as an oxidizing redox environment. The imbalance between the load and capacity of protein folding results in a cellular condition known as ER stress. Failure of these pathways to restore ER homeostasis results in the activation of apoptotic pathways. Protein disulfide isomerases (PDI) compose a superfamily of oxidoreductases that have diverse sequences and are localized in the ER, nucleus, cytosol, mitochondria and cell membrane. The PDI superfamily has multiple functions including, acting as molecular chaperones, protein-binding partners, and hormone reservoirs. Recently , PDI family members have been implicated in the regulation of apoptotic signaling events. The complexities underlying the molecular mechanisms that define the switch from pro-survival to pro-death response are evidenced by recent studies that reveal the roles of specific chaperone proteins as integration points in signaling pathways that determine cell fate. The following review discusses the dual role of PDI in cell death and survival during ER stress.

Publisher

Walter de Gruyter GmbH

Subject

Cell Biology,Medicine (miscellaneous)

Reference137 articles.

1. Activation of the unfolded protein response occurs at all stages of atherosclerotic lesion development in apolipoprotein deficient mice;Zhou;Circulation,2005

2. Cell surface relocalization of the endoplasmic reticulum chaperone and unfolded protein response regulator GRP / BiP;Zhang;J Biol Chem,2010

3. Nitrosative stress - induced S - glutathionylation of protein disulfide isomerase;Uys;Methods Enzymol,2011

4. Inhibitors of protein disulfide isomerase suppress apoptosis induced by misfolded proteins;Hoffstrom;Nat Chem Biol,2010

5. Oxidative processing of latent Fas in the endoplasmic reticulum controls the strength of apoptosis;Anathy;Mol Cell Biol,2012

Cited by 66 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3