Nanotechnology for treatment of glioblastoma multiforme

Author:

Michael Justin S.1,Lee Bong-Seop1,Zhang Miqin2,Yu John S.1

Affiliation:

1. Department of Neurosurgery, Cedars-Sinai Medical Center , Los Angeles , California , USA

2. Department of Materials Science and Engineering , University of Washington , Seattle , Washington , USA

Abstract

Abstract Glioblastoma multiforme (GBM), a grade IV astrocytoma as defined by the World Health Organization (WHO) criteria, is the most common primary central nervous system tumor in adults. After treatment with the current standard of care consisting of surgical resection, concurrent temozolomide (TMZ), and radiation, the median survival is only 15 months. The limited and less-effective treatment options for these highly aggressive GBMs call for the development of new techniques and the improvement of existing technologies. Nanotechnology has shown promise in treating this disease, and some nanomaterials have demonstrated the ability to cross the blood–brain barrier (BBB) and remain in GBM tissues. Although the retention of nanoparticles (NPs) in GBM tissue is necessary to elicit an antitumor response, the delivery of the NP needs to be enhanced. Current research in nanotechnology is directed at increasing the active targeting of GBM tissue not only for the aid of chemotherapeutic drug delivery but also for imaging studies. This review is aimed at describing advancements in increasing nanotechnology specificity to GBM tissue.

Publisher

Walter de Gruyter GmbH

Subject

Internal Medicine

Cited by 60 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3