QSAR study of amidino bis-benzimidazole derivatives as potent anti-malarial agents against Plasmodium falciparum

Author:

Worachartcheewan Apilak,Nantasenamat Chanin,Isarankura-Na-Ayudhya Chartchalerm,Prachayasittikul Virapong

Abstract

AbstractA data set of amidino bis-benzimidazoles, in particular 2′-arylsubstituted-1H,1′H-[2,5′]bisbenzimidazolyl-5-carboximidine derivatives with anti-malarial activity against Plasmodium falciparum was employed in investigating the quantitative structure-activity relationship (QSAR). Quantum chemical and molecular descriptors were obtained from B3LYP/6-31g(d) calculations and Dragon software, respectively. Significant variables, which included total energy (E T), highest occupied molecular orbital (HOMO), Moran autocorrelation-lag3/weighted by atomic masses (MATS3m), Geary autocorrelation-lag8/weighted by atomic masses (GATS8m), and 3D-MoRSEsignal 11/weighted by atomic Sanderson electronegativities (Mor11e), were used in the construction of QSAR models using multiple linear regression (MLR) and artificial neural network (ANN). The results indicated that the predictive models for both the MLR and ANN approaches using leave-one-out cross-validation afforded a good performance in modelling the anti-malarial activity against P. falciparum as observed by correlation coefficients of leave-one-out cross-validation (R LOO-CV) of 0.9760 and 0.9821, respectively, root mean squared error of leave-one-out cross-validation (RMSELOO-CV) of 0.1301 and 0.1102, respectively, and predictivity of leave-one-out cross-validation (Q LOO-CV2) of 0.9526 and 0.9645, respectively. Model validation was performed using an external testing set and the results suggested that the model provided good predictivity for both MLR and ANN models with correlation coefficient of the external set (R Ext) values of 0.9978 and 0.9844, respectively, root mean squared error of the external set (RMSEExt) of 0.0764 and 0.1302 respectively, and predictivity of the external set (Q Ext2) of 0.9956 and 0.9690, respectively. Furthermore, the robustness of the QSAR models is corroborated by a number of statistical parameters, comprising adjusted correlation coefficient (R Adj2), standard deviation (s), predicted residual sum of squares (PRESS), standard error of prediction (SDEP), total sum of squares deviation (SSY), and quality factor (Q). The QSAR models so constructed provide pertinent insights for the future design of anti-malarial agents.

Publisher

Springer Science and Business Media LLC

Subject

Materials Chemistry,Industrial and Manufacturing Engineering,General Chemical Engineering,Biochemistry,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3