Magnetic, spectral, and thermal behaviour of 2-chloro-4-nitrobenzoates of Co(II), Ni(II), and Cu(II)

Author:

Ferenc W.,Cristóvão B.,Mazurek B.,Sarzyński J.

Abstract

AbstractSome physicochemical properties of 2-chloro-4-nitrobenzoates of Co(II), Ni(II), and Cu(II) were studied. The complexes were obtained as mono-and dihydrates with a metal ion—ligand mole ratio of 1: 2. All complexes are polycrystalline compounds. Their colours depend on the kind of central ion: pink for Co(II) complex, green for Ni(II), and blue for Cu(II) complexes. Their thermal decomposition was studied only in the range of 293 K–523 K because it was found that on heating in air above 523 K 2-chloro-4-nitrobenzoates decompose explosively. Hydrated complexes lose crystallization water molecules in one step. During dehydration process no transformation of the nitro group to nitrito one took place. Their solubilities in water at 293 K are of the orders of 10−3-10−2 mol dm−3. The magnetic moment values of 2-chloro-4-nitrobenzoates determined in the range of 76 K–303 K change from 3.48µB to 3.82µB for Co(II) complex, from 2.24µB to 2.83µB for Ni(II) 2-chloro-4-nitrobenzoate, and from 0.31µB to 1.41µB for Cu(II) complex. 2-Chloro-4-nitrobenzoates of Co(II) and Ni(II) follow the Curie—Weiss law, but the complex of Cu(II) forms dimer.

Publisher

Springer Science and Business Media LLC

Subject

Materials Chemistry,Industrial and Manufacturing Engineering,General Chemical Engineering,Biochemistry,General Chemistry

Reference11 articles.

1. Inorganic Physical Chemistry Polish entific Publisher;Keetle;Sci,1999

2. Acta;Ferenc;Chim Hung,2000

3. Handbuch der Organischen Chemie Springer;Beilsteins;IX,1926

4. Thermal Analysis of Minerals Tunbridge;Todor;Abacus,1976

5. Progress in Inorganic Chemistry terscience Publication New;O Connor;In,1982

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3