Author:
Sýs Milan,Metelka Radovan,Mikysek Tomáš,Vytřas Karel
Abstract
AbstractThe catalytic oxidation of a synthetic water-soluble analogue of vitamin E (α-tocopherol, Trolox) by tyrosinase enzyme in the presence of molecular oxygen was studied using electrochemical techniques. This specific enzymatic reaction was exploited for the preparation of a biosensor based on the amperometric reduction of the electroactive product (α-tocoquinone) formed. An electroactive surface of the transducers used was covered with a thin conductive layer of Nafion containing tyrosinase. Significant progress in sensitivity towards polyphenolic compounds such as Trolox was achieved at CPE with carbon nanotubes immobilised on its surface (CPE/CNTs) as electric transducers. The biosensor so developed can be used for the direct determination of total phenolic content (TPC). This important nutrition value can be expressed as the mass equivalent of Trolox, i.e. Trolox equivalent antioxidant capacity (TEAC), which could be used as an alternative to the evaluations currently used based on spectrophotometric methods such as total radical-trapping antioxidant parameter (TRAP), ferric reducing-antioxidant power (FRAP) or 1,1-diphenyl-2-picrylhydrazyl spectrometric assay (DPPH). The effects of the enzyme amount in the Nafion layer (3.0 μg), the influence of the nanoparticles present, the optimal pH value suitable for enzymatic activity (7.0), and the kinetics of enzymatic and electrochemical reactions were studied using cyclic voltammetry (CV). The determination of optimal conditions for amperometry in batch configuration (working potential, speed of stirring, volume of sample, calibration curve, etc.) was not a target of this electrochemical study.
Publisher
Springer Science and Business Media LLC
Subject
Materials Chemistry,Industrial and Manufacturing Engineering,General Chemical Engineering,Biochemistry,General Chemistry
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献