Acidity, lipophilicity, solubility, absorption, and polar surface area of some ACE inhibitors

Author:

Remko M.

Abstract

AbstractComputational chemical methods have been used to correlate the molecular properties of the 10 ACE inhibitors (captopril, enalapril, perindopril, lisinopril, ramipril, trandolapril, quinapril, fosinopril, benazepril, and cilazapril) and some of their active metabolites (enalaprilat, perindoprilat, ramiprilat, trandolaprilat, quinaprilat, fosinoprilat, benazeprilat, and cilazaprilat). The computed pK a values correlate well with the available experimental values. In the dicarboxylic ACE inhibitors, the carboxyalkyl carboxylate group of the ACE inhibitors studied is more acidic than the C-terminal carboxylate. However, at physiological pH = 7.4 both carboxyl groups of ACE inhibitors are completely ionized and the dicarboxyl-containing ACE inhibitors behave as strong acids. The available experimental partition coefficients of these ACE inhibitors investigated are well reproduced by the neural network-based ALOGPs and the fragment-based KoWWiN methods. All parent drugs (and prodrugs), with the exception of fosinopril, are compounds with low lipophilicity. Calculated pK a, lipophilicity, solubility, absorption, and polar surface area of the most effective ACE inhibitors for the prevention of myocardial infarction, perindopril and ramipril, were found similar. Therefore, it is probable that the experimentally observed differences in the survival benefits in the first year after acute myocardial infarction in patients 65 years of age or older correlate closely to the physicochemical and pharmacokinetic characteristics of the specific ACE inhibitor that is used.

Publisher

Springer Science and Business Media LLC

Subject

Materials Chemistry,Industrial and Manufacturing Engineering,General Chemical Engineering,Biochemistry,General Chemistry

Reference61 articles.

1. http dx org;Razzetti;Am J Cardiol,1995

2. http dx org;Kelly;Clin Pharmacokinet,1990

3. http dx org;Meylan;Pharm Sci,1995

4. http dx org;Tetko;Chem Inf Comput Sci,2001

5. http dx org;Wong;Prog Cardiovasc Dis,2004

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3