Author:
Bekhradnia Ahmad,Arshadi Sattar,Siadati Seyed
Abstract
AbstractA theoretical study was performed on the 1,3-dipolar cycloaddition between 2,3-dihydrofuran and substituted phenyl azide using Density Functional Theory (DFT) in combination with a 6-311++G(d,p) basis set. The optimum geometries for reactant, transition state and product, as well as the kinetic data, rate constants and reaction constant (ρ) were investigated to rationalise the substitution effects and reaction rates of the 1,3-dipolar cycloaddition process in various solvents. The DFT calculation and Frontier Molecular Orbital (FMO) theory as well as the atomic Fukui indices show that the electron-withdrawing substituents enhance the reaction constant (ρ > 0), especially in polar aprotic solvents. Consequently, small changes in the rate constant of the reaction in various solvents and geometric similarity between reactants and transition state structures were suggested as the early transition state mechanism for electron-withdrawing substituents. In addition, the slope of the Hammett plot and susceptibility of the reaction to electron-withdrawing substituents in various solvents confirmed the mechanism.
Publisher
Springer Science and Business Media LLC
Subject
Materials Chemistry,Industrial and Manufacturing Engineering,General Chemical Engineering,Biochemistry,General Chemistry
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献