Improvement of aquatic pollutant partition coefficient correlations using 1D molecular descriptors — chlorobenzene case study

Author:

Maria Cristina,Tociu Carmen,Maria Gheorghe

Abstract

AbstractPartition coefficients between environmental compartments are essential parameters in any predictive models on pollutants’ fate in various emission scenarios. When sufficient experimental data are not available, empirical algebraic models are capable of predicting the pollutant partitioning characteristics based on bulk physico-chemical properties or various molecular structural features. When the use of sophisticated rules based on detailed 2D–3D molecular descriptors is not available as a quick option, inexpensive, simple correlations based solely on octanol-1-ol (octanol)-water partition coefficients (K ow) are extensively employed. The present study investigates enhancing the adequacy of such hydrophobicity-based models by adding simple 1D descriptors, readily identifiable by inspecting the substance structure (i.e. the number of chlorine atoms bound to aromatic rings, or the number of aromatic 5- or 6-atom rings, etc.), in addition to the pollutant’s solubility in water. Exemplification is made for predicting the water-biota (fish)-sediment partition coefficients for chlorobenzenes (CBz).

Publisher

Springer Science and Business Media LLC

Subject

Materials Chemistry,Industrial and Manufacturing Engineering,General Chemical Engineering,Biochemistry,General Chemistry

Reference21 articles.

1. Integrated environmental modelling Pollutant transport fate and risk in the environment;Ramaswami;USA,2005

2. Handbook of environmental data on organic chemicals New York;Verschueren;USA,2001

3. Comparison of BCF models based on log P;Devillers;Chemosphere,1996

4. Bioaccumulation of persistent organic chemicals : mechanisms and models Environmental;Mackay;Pollution,2000

5. Statistical external validation and consensus modeling : A QSPR case study for Koc prediction of Molecular Graphics and Modelling;Gramatica;Journal,2007

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3