Author:
Čižniar Michal,Podmajerský Marián,Hirmajer Tomáš,Fikar Miroslav,Latifi Abderrazak
Abstract
AbstractThe estimation of parameters in semi-empirical models is essential in numerous areas of engineering and applied science. In many cases, these models are described by a set of ordinary-differential equations or by a set of differential-algebraic equations. Due to the presence of non-convexities of functions participating in these equations, current gradient-based optimization methods can guarantee only locally optimal solutions. This deficiency can have a marked impact on the operation of chemical processes from the economical, environmental and safety points of view and it thus motivates the development of global optimization algorithms. This paper presents a global optimization method which guarantees ɛ-convergence to the global solution. The approach consists in the transformation of the dynamic optimization problem into a nonlinear programming problem (NLP) using the method of orthogonal collocation on finite elements. Rigorous convex underestimators of the nonconvex NLP problem are employed within the spatial branch-and-bound method and solved to global optimality. The proposed method was applied to two example problems dealing with parameter estimation from time series data.
Publisher
Springer Science and Business Media LLC
Subject
Materials Chemistry,Industrial and Manufacturing Engineering,General Chemical Engineering,Biochemistry,General Chemistry
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献