Ab initio- and density-functional studies of conformational behaviour of N-formylmethionine in gaseous phase

Author:

Das Gunajyoti,Mandal Shilpi

Abstract

AbstractThe current work is a study of the conformational space of the non-ionic N-formylmethionine molecule around its seven structurally significant internal backbone torsional angles at B3LYP/6-31++G(d,p) levels of theory in the gaseous phase. The potential energy surface exploration reveals that a total of 432 different conformers would result if all the possible combinations of the internal rotations were to be considered. A set of twelve conformers of the N-formylmethionine molecule are then further analysed in terms of their relative stabilities, theoretically predicted harmonic vibrational frequencies, HOMO-LUMO energy gaps, ESP charges, rotational constants and dipole moments calculated using MP2/6-31++G(d,p) and B3LYP/6-311++G(d,p) levels. The calculated relative energy-range of the conformers at the MP2 level is 11.08 kcal mol−1 (1 kcal = 4.1868 kJ), whereas the same obtained at the B3LYP level is 10.02 kcal mol−1. The results of this study provide a good account of the role of four types of intramolecular H-bonds, namely O…H—O, O…H—N, O…H—C and N…H—C, in influencing the energies of the conformers as well as their conformational and vibrational spectroscopic aspects. The relative stability order of the conformers appears to depend on the level of theory used while the vibrational frequencies calculated at the B3LYP level are in better agreement with the experimental values.

Publisher

Springer Science and Business Media LLC

Subject

Materials Chemistry,Industrial and Manufacturing Engineering,General Chemical Engineering,Biochemistry,General Chemistry

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3