Author:
Nantasenamat Chanin,Worachartcheewan Apilak,Mandi Prasit,Monnor Teerawat,Isarankura-Na-Ayudhya Chartchalerm,Prachayasittikul Virapong
Abstract
AbstractAromatase is a member of the cytochrome P450 family responsible for catalyzing the rate-limiting conversion of androgens to estrogens. In the pursuit of robust aromatase inhibitors, quantitative structure-activity relationship (QSAR) and classification structure-activity relationship (CSAR) studies were performed on a non-redundant set of 63 flavonoids using multiple linear regression, artificial neural network, support vector machine and decision tree approaches. Easy-to-interpret descriptors providing comprehensive coverage on general characteristics of molecules (i.e., molecular size, flexibility, polarity, solubility, charge and electronic properties) were employed to describe the unique physicochemical properties of the investigated flavonoids. QSAR models provided good predictive performance as observed from their statistical parameters with Q values in the range of 0.8014 and 0.9870 for the cross-validation set and Q values in the range of 0.8966 and 0.9943 for the external test set. Furthermore, CSAR models developed with the J48 algorithm are able to accurately classify flavonoids as active and inactive as observed from the percentage of correctly classified instances in the range of 84.6 % and 100 %. The study presented herein represents the first large-scale QSAR study of aromatase inhibition on a large set of flavonoids. Such investigations provide an important insight on the origins of aromatase inhibitory properties of flavonoids as breast cancer therapeutics.
Publisher
Springer Science and Business Media LLC
Subject
Materials Chemistry,Industrial and Manufacturing Engineering,General Chemical Engineering,Biochemistry,General Chemistry
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献