Affiliation:
1. Institute of Hydrodynamics of Czech Academy of Sciences , v. v. i., Pod Patankou 30/5, 160 00, Prague 6, Czech Republic .
Abstract
Abstract
For the safe and economical design and operation of freight pipelines it is necessary to know slurry flow behaviour in inclined pipe sections, which often form significant part of pipelines transporting solids. Fine-grained settling slurry was investigated on an experimental pipe loop of inner diameter D = 100 mm with the horizontal and inclined pipe sections for pipe slopes ranging from −45° to +45°. The slurry consisted of water and glass beads with a narrow particle size distribution and mean diameter d50
= 180 µm. The effect of pipe inclination, mean transport volumetric concentration, and slurry velocity on flow behaviour, pressure drops, deposition limit velocity, and concentration distribution was studied. The study revealed a stratified flow pattern of the studied slurry in inclined pipe sections. Frictional pressure drops in the ascending pipe were higher than that in the descending pipe, the difference decreased with increasing velocity and inclination. For inclination less than about 25° the effect of pipe inclinations on deposition limit velocity and local concentration distribution was not significant. For descending pipe section with inclinations over −25° no bed deposit was observed.
Subject
Fluid Flow and Transfer Processes,Mechanical Engineering,Water Science and Technology
Reference28 articles.
1. Clift, R., Clift, D.H.M., 1981. Continuous measurement of the density of flowing slurries. International Journal of Multiphase Flow, 7, 5, 555–561.10.1016/0301-9322(81)90058-6
2. Doron, M., Simkhis, M., Barnea, D., 1997. Flow of solid-liquid mixtures in inclined pipes. International Journal of Multiphase Flow, 23, 313–323.10.1016/S0301-9322(97)80946-9
3. Durand, R., Condolios, E., 1952. Étude expérimentale du refoulement des matériaux en conduite. 2émes Journées de l´Hydralique, SHF, Grenoble.
4. Gibert, R., 1960. Transport hydraulique et refoulement des mixtures en conduites. Annales Des Ponts et Chaussees, 12, 307–374.
5. Gopaliya, M.K., Kaushal, D.R., 2016. Modeling of sand-water slurry flow through horizontal pipe using CFD. Journal of Hydrology and Hydromechanics, 64, 3, 261–272.10.1515/johh-2016-0027
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献