Performance of a shallow-water model for simulating flow over trapezoidal broad-crested weirs

Author:

Říha Jaromír1,Duchan David1,Zachoval Zbyněk1,Erpicum Sébastien2,Archambeau Pierre2,Pirotton Michel2,Dewals Benjamin2

Affiliation:

1. Faculty of Civil Engineering , Brno University of Technology , Brno , Czech Republic .

2. Hydraulics in Environmental and Civil Engineering (HECE), Research unit Urban & Environmental Engineering , University of Liege (ULiège) , Belgium .

Abstract

Abstract Shallow-water models are standard for simulating flow in river systems during floods, including in the near-field of sudden changes in the topography, where vertical flow contraction occurs such as in case of channel overbanking, side spillways or levee overtopping. In the case of stagnant inundation and for frontal flow, the flow configurations are close to the flow over a broad-crested weir with the trapezoidal profile in the flow direction (i.e. inclined upstream and downstream slopes). In this study, results of shallow-water numerical modelling were compared with seven sets of previous experimental observations of flow over a frontal broad-crested weir, to assess the effect of vertical contraction and surface roughness on the accuracy of the computational results. Three different upstream slopes of the broad-crested weir (V:H = 1:Z 1 = 1:1, 1:2, 1:3) and three roughness scenarios were tested. The results indicate that, for smooth surface, numerical simulations overestimate by about 2 to 5% the weir discharge coefficient. In case of a rough surface, the difference between computations and observations reach up to 10%, for high relative roughness. When taking into account mentioned the differences, the shallow-water model may be applied for a range of engineering purposes.

Publisher

Walter de Gruyter GmbH

Subject

Fluid Flow and Transfer Processes,Mechanical Engineering,Water Science and Technology

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3