Microstructure of the Nialv Alloys Subjected to the Hpt Deformation

Author:

Czeppe T.,Korznikova G.F.,Korznikov A.W.,Litynska-Dobrzynska L.,Swiatek Z.

Abstract

Some attention in physical metallurgy is devoted to the mechanisms of decomposition of the disordered phases via eutectoid transformation accompanied by the atomic ordering. In case of the non-pearlitic modes of transformation this concerns intermetallic phases of the general description A3B-A3C. The application of intensive deformation like HPT may introduce opposite mechanisms introducing some degree of the metastable disordered phase structure at room temperature. The paper presents results of the phase composition and microstructure studies of the alloys of composition Ni75AlxVy (where x =15, 10, 5 and y =10, 15, 20), which undergo the solid-state eutectoid decomposition at temperature 1281 K, in the equilibrium conditions. The alloys achieved by the cold crucible levitation method were later intensively deformed with the method of high pressure torsion (HPT). The alloys after HPT revealed homogenous, metastable L12 (Ni3Al) structure in place of the eutectoid product L12-D022. The average size of the Sherrer’s coherent diffraction volumes did not exceed 9 nm, suggesting nano-structure of the material. Transmission electron microscopy (TEM) and high resolution electron microscopy (HRTEM) revealed that the micro- and nano- deformation twins were the main feature of the microstructure, dividing volume into cells of the sizes similar to the coherent volumes. The HPT deformation did not influence atomic order. The results are compared with those achieved for the injection cast samples.

Publisher

Walter de Gruyter GmbH

Subject

Metals and Alloys

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3