Perforation Test as an Accuracy Evaluation Tool for a Constitutive Model of Austenitic Steel

Author:

Moćko W.,Kowalewski Z.L.

Abstract

Abstract In this paper, a new method for assessing the accuracy of a constitutive model is proposed. The method uses perforation test done by drop weight tower. The assessment is carried out by comparison of striker velocity curve obtained using experiment and FEM simulation. In order to validate proposed method the various constitutive equations were applied i.e. Johnson-Cook, Zerilli-Armstrong and the extended Rusinek-Klepaczko to model mechanical behaviour of X4CrMnN16-12 austenitic steel. The steel was characterized at wide range of strain and strain rates using servo-hydraulic testing machine and split Hopkinson pressure bar. The relative error calculated as a difference between measured and constitutive model based stress-strain curve was applied as a reference data (classic approach). Subsequently, it was compared with relative error determined on the basis of experimental and FEM calculated striker velocity (new approach). A good correlation between classic and a new method was found. Moreover, a new method of error assessment enables to validate constitutive equation in a wide range of strain rates and temperatures on the basis of a single experiment.

Publisher

Walter de Gruyter GmbH

Subject

Metals and Alloys

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. An influence of impact energy on magnesium alloy behaviour;International Journal of Mechanics and Materials in Design;2019-05-23

2. Implicit Nonlocality in the Framework of Viscoplasticity;Handbook of Nonlocal Continuum Mechanics for Materials and Structures;2019

3. Implicit Nonlocality in the Framework of Viscoplasticity;Handbook of Nonlocal Continuum Mechanics for Materials and Structures;2017

4. Application of a nanosecond laser pulse to evaluate dynamic hardness under ultra-high strain rate;Optics & Laser Technology;2016-04

5. Optimization of two-component armour;Bulletin of the Polish Academy of Sciences Technical Sciences;2015-03-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3