Abstract
Numerical Models of Hardening Phenomena of Tools Steel Base on the TTT and CCT DiagramsIn work the presented numerical models of tool steel hardening processes take into account thermal phenomena, phase transformations and mechanical phenomena. Numerical algorithm of thermal phenomena was based on the Finite Elements Methods in Galerkin formula of the heat transfer equations. In the model of phase transformations, in simulations heating process, isothermal or continuous heating (CHT) was applied, whereas in cooling process isothermal or continuous cooling (TTT, CCT) of the steel at issue. The phase fraction transformed (austenite) during heating and fractions of ferrite, pearlite or bainite are determined by Johnson-Mehl-Avrami formulas. The nescent fraction of martensite is determined by Koistinen and Marburger formula or modified Koistinen and Marburger formula. In the model of mechanical phenomena, apart from thermal, plastic and structural strain, also transformations plasticity was taken into account. The stress and strain fields are obtained using the solution of the Finite Elements Method of the equilibrium equation in rate form. The thermophysical constants occurring in constitutive relation depend on temperature and phase composite. For determination of plastic strain the Huber-Misses condition with isotropic strengthening was applied whereas for determination of transformation plasticity a modified Leblond model was used. In order to evaluate the quality and usefulness of the presented models a numerical analysis of temperature field, phase fraction, stress and strain associated hardening process of a fang lathe of cone shaped made of tool steel was carried out.
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献