Connecting the Last.fm Dataset to LyricWiki and MusicBrainz. Lyrics-based experiments in genre classification

Author:

Bodó Zalán1,Szilágyi Eszter2

Affiliation:

1. Babeş–Bolyai University , Faculty of Mathematics and Computer Science , Cluj-Napoca , Romania

2. Cluj-Napoca , Romania

Abstract

Abstract Music information retrieval has lately become an important field of information retrieval, because by profound analysis of music pieces important information can be collected: genre labels, mood prediction, artist identification, just to name a few. The lack of large-scale music datasets containing audio features and metadata has lead to the construction and publication of the Million Song Dataset (MSD) and its satellite datasets. Nonetheless, mainly because of licensing limitations, no freely available lyrics datasets have been published for research. In this paper we describe the construction of an English lyrics dataset based on the Last.fm Dataset, connected to LyricWiki’s database and MusicBrainz’s encyclopedia. To avoid copyright issues, only the URLs to the lyrics are stored in the database. In order to demonstrate the eligibility of the compiled dataset, in the second part of the paper we present genre classification experiments with lyrics-based features, including bagof-n-grams, as well as higher-level features such as rhyme-based and statistical text features. We obtained results similar to the experimental outcomes presented in other works, showing that more sophisticated textual features can improve genre classification performance, and indicating the superiority of the binary weighting scheme compared to tf–idf.

Publisher

Walter de Gruyter GmbH

Reference60 articles.

1. [1] C. Apté, F. Damerau, and S. M. Weiss. Toward language independent automated learning of text categorization models. In Proceedings of the 17th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, pages 23–30, Dublin, Ireland, 1994. Springer-Verlag. ⇒171

2. [2] J. Atherton and B. Kaneshiro. I said it first: Topological analysis of lyrical influence networks. In ISMIR, pages 654–660, 2016. ⇒162

3. [3] T. Bertin-Mahieux, D. P. W. Ellis, B. Whitman,and P. Lamere. The million song dataset. In A. Klapuri and C. Leider, editors, ISMIR, pages 591–596. University of Miami, 2011. ⇒159, 160

4. [4] M. Besson, F. Faita, I. Peretz, A.-M. Bonnel, and J. Requin. Singing in the brain: Independence of lyrics and tunes. Psychological Science, 9(6):494–498, 1998. ⇒160, 169

5. [5] C. M. Bishop. Pattern recognition and machine learning. Springer, 2006. ⇒174

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Predicting spotify audio features from Last.fm tags;Multimedia Tools and Applications;2023-11-02

2. AI-Based Music Recommendation Algorithm under Heterogeneous Network Platform;Mobile Information Systems;2022-09-02

3. Music Industry Trend Forecasting Based on MusicBrainz Metadata;Intelligent Information and Database Systems;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3