Novel Interactions of Adrenodoxin-Related [2Fe-2S] Plant Ferredoxins MFDX1 and MFDX2 Indicate Their Involvement in a Wide Spectrum of Functions in Plant Mitochondria

Author:

Shematorova Elena K.1,Slovokhotov Ivan Yu.1,Shmakov Vladimir N.2,Khaliluev Marat R.3,Shpakovski Dmitry G.1,Klykov Valery N.1,Babak Olga G.4,Spivak Svetlana G.4,Konstantinov Yuri M.25,Shpakovski George V.1

Affiliation:

1. Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry , Russian Academy of Sciences , Moscow , Russia

2. Siberian Institute of Plant Physiology and Biochemistry SB RAS , Irkutsk , Russia

3. All-Russian Scientific Institute of Agricultural Biotechnology , Moscow , Russia

4. Institute of Genetics and Cytology , National Academy of Sciences of Belarus , Minsk , Belarus

5. Irkutsk State University , Irkutsk , Russia

Abstract

Abstract Electron transfer chains of plant organelles (both chloroplasts and mitochondria) contain their own special set of ferredoxins. The relatively recently described adrenodoxin-like [2Fe-2S]-ferredoxins MFDX1 and MFDX2 of plant mitochondria are among the least studied of these. Until now, the only established function for them is participation in the final stage of biotin biosynthesis. In this work, using genetic and biochemical approaches, we searched for possible partners of these proteins in the genomes and proteomes of tobacco (Nicotiana tabacum L.) and foxglove (Digitalis purpurea L.) plants. MORF9 protein, one of the auxiliary components of the RNA editing complex of organelles (editosome), was found among the most prominent protein partners of adrenodoxin-like [2Fe-2S] tobacco ferredoxins. According to the results obtained from the yeast two-hybrid system, NtMFDX1 and NtMFDX2 of tobacco also bind and interact productively with the previously uncharacterised long non-coding polyadenylated RNA, which, based on its structural features, is capable of regulating the function of a number of components of complexes I (Nad1, Nad5) and III (protein of the cytochrome c synthesis system CcmF) and contributes to the formation of Fe/S-clusters in the corresponding protein complexes of the respiratory chain of plant mitochondria. We found one of the main components of the thiazol synthase complex (mitochondrial protein DpTHI1) to be the partner of ferredoxin DpMFDX2 of Digitalis purpurea. Finally, additional arguments were obtained in favour of the possible participation of MFDX1 and MFDX2 in the very ancient, but only recently described ‘progesterone’ steroid hormonal regulatory system: in leaves of the previously constructed CYP11A1-transgenic tomato plants, only the mature form of mitochondrial cytochrome P450scc (CYP11A1) of mammals is able to enter the mitochondria, where the above-mentioned components of the electron transport chain are localised. In summary, all of the newly revealed interactions of adrenodoxin-like [2Fe-2S] ferredoxins MFDX1 and MFDX2 indicate their participation in a wide range of functions in plant mitochondria.

Publisher

Walter de Gruyter GmbH

Subject

Multidisciplinary

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3