A New Perspective of Genome Regulation from the Physics of Life Standpoint

Author:

Ērenpreisa Jekaterina1,Giuliani Alessandro2

Affiliation:

1. Latvian Biomedical Research and Study Centre , 1-1k Rātsupītes Str ., Rīga , , Latvia

2. Istituto Superiore di Sanità , Viale Regina Elena 299 , , Roma , Italy

Abstract

Abstract The convergence between a statistical mechanics and biological approach in elucidating some basic features of cell differentiation opens new avenues of research in gene expression regulation and holds some promises in terms of a re-differentiation approach to a cancer cure. The message emerging from two recent papers by the authors of the present communication follows very simple basic lines. The time-honored concept of homeostasis, at the very basis of physiology, is in action even at the microscopic level of gene expression regulation, where a continuous (relatively small) oscillation of gene expression is mandatory for keeping alive the substantial stability of the gene expression profile typical of a given cell type. This mechanism of stability, when oscillation exceeds a certain threshold, is responsible for the spreading of a large-scale perturbation invading the entire genome and eventually giving rise to cell fate change. The material basis of this model was discovered in the onset of a global reorganisation of chromatin driven by fusion-splitting dynamics of pericentromeric associated domains that, by selective folding/unfolding of chromatin, allows for a global scale re-arrangement of genome expression.

Publisher

Walter de Gruyter GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3