Influence of Antibiotic-Impregnated Biomaterials on Inflammatory Cytokines
-
Published:2019-04-07
Issue:2
Volume:73
Page:177-184
-
ISSN:1407-009X
-
Container-title:Proceedings of the Latvian Academy of Sciences. Section B. Natural, Exact, and Applied Sciences.
-
language:en
-
Short-container-title:
Author:
Skadiņš Ingus1, Kroiča Juta1, Salma Ilze2, Reinis Aigars1, Sokolova Marina3, Rostoka Dagnija1
Affiliation:
1. Department of Biology and Microbiology , Rīga Stradiņš University , 16 Dzirciema Str., Rīga , LV-1007 , Latvia 2. Department of Oral and Maxillofacial Surgery , Rīga Stradiņš University , 20 Dzirciema Str., Rīga , LV-1007 , Latvia 3. Faculty of Material Science and Applied Chemistry , Rīga Technical University , 3 Paula Valdena Str., Rīga , LV-1048 , Latvia
Abstract
Abstract
Local antibiotic therapy has several advantages over systemic antibiotic treatment. Using antibiotics in local biomaterial systems can reduce the number of microorganisms that can adhere to implanted biomaterials. In this in vitro study, antibacterial properties of hydroxyapatite biomaterials impregnated with antibiotics and biodegradable polymers were examined. The antibacterial efficiency of hydroxyapatite biomaterials impregnated with antibiotics and biodegradable polymers against Staphylococcus epidermidis and Pseudomonas aeruginosa was studied by evaluating the expression of inflammatory cytokines (Interleukin-10 (IL-10), -defensin-2 and tumour necrosis factor alpha (TNF- )) in tissue surrounding implanted biomaterials in vivo. The results of this study demonstrated that hydroxyapatite biomaterials impregnated with antibiotics and biodegradable polymers had a prolonged antibacterial effect in comparison to biomaterials without biodegradable polymers. Surrounding tissue displayed higher levels of inflammatory cytokines when implanted biomaterials had not been previously impregnated with antibiotics.
Publisher
Walter de Gruyter GmbH
Subject
Multidisciplinary
Reference33 articles.
1. Antoci, V. Jr., Adams, C. S., Parvizi, J., Davidson, H. M., Composto, R. J., Freeman, T. A., Wickstrom, E., Ducheyne, P., Jungkind, D., Shapiro, I. M.,, Hickok, N. J. (2008). The inhibition of Staphylococcus epidermidis biofilm formation by vancomycin-modified titanium alloy and implications for the treatment of periprosthetic infection. Biomaterials, 29, 4684–4690. 2. Aybar, Y., Ozaras, R., Besirli, K., Engin, E., Karabulut, E., Salihoglu, T., Mete, B., Tabak, F., Mert, A., Tahan, G., Yilmaz, M. H., Ozturk, R. (2012). Efficacy of tigecycline and vancomycin in experimental catheter-related Staphylococcus epidermidis infection: microbiological and electron microscopic analysis of biofilm. Int. J. Antimicrob. Agents, 39, 338–342. 3. Bottner, F., Wegner, A., Winkelmann, W., Becker, K., Erren, M., Götze, C. (2007). Interleukin-6, procalcitonin and TNF-alpha: Markers of peri-prosthetic infection following total joint replacement. J. Bone Joint Surg. Br., 89, 94–99. 4. Chai, F., Hornez, J. C., Blanchemain, N., Neut, C., Descamps, M., Hildebrand, H. F. (2007). Antibacterial activation of hydroxyapatite (HA) with controlled porosity by different antibiotics. Biomol. Eng., 24 (5), 510–514. 5. Drenkard, E. (2003). Antimicrobial resistance of Pseudomonas aeruginosa bioilms. Microbes Infect., 5 (13), 1213–1219.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|