Sensory Feedback in Upper Limb Prostheses

Author:

Dimante Dace12,Logina Ināra13,Sinisi Marco2,Krūmiņa Angelika14

Affiliation:

1. Rīga Stradiņš University , 16 Dzirciema Str., Rīga, LV-1007 , Latvia

2. Peripheral Nerve Injury Unit, Royal National Orthopaedic Hospital , Brockley Hill, Stanmore, Middlesex HA7 4LP, United Kingdom

3. Pauls Stradiņš Clinical University Hospital , 13 Pilsoņu Str., Rīga, LV-1002 , Latvia

4. Rīga East University Clinical Hospital , 2 Hipokrāta Str., Rīga, LV-1038 , Latvia

Abstract

Abstract Loss of an arm is a devastating condition that can cross all socioeconomic groups. A major step forward in rehabilitation of amputees has been the development of myoelectric prostheses. Current robotic arms allow voluntary movements by using residual muscle contraction. However, a significant issue is lack of movement control and sensory feedback. These factors play an important role in integration and embodiment of a robotic arm. Without feedback, users rely on visual cues and experience overwhelming cognitive demand that results in poorer use of a prosthesis. The complexity of the afferent system presents a great challenge of creating a closed-loop hand prosthesis. Several groups have shown progress providing sensory feedback for upper limb amputees using robotic arms. Feedback, although still limited, is achieved through direct implantation of intraneural electrodes as well as through non-invasive methods. Moreover, evidence shows that over time some amputees develop a phantom sensation of the missing limb on their stump. This phenomenon can occur spontaneously as well as after non-invasive nerve stimulation, suggesting the possibility of recreating a sensory homunculus of the hand on the stump. Furthermore, virtual reality simulation in combination with mechanical stimulation of skin could augment the sensation phenomenon, leading to better interface between human and robotic arms.

Publisher

Walter de Gruyter GmbH

Subject

Multidisciplinary

Reference120 articles.

1. Ahmad, S. A., Chappell, P. H. (2009). Artificial prehension and the detection of object slip. In: World Congress on Medical Physics and Biomedical Engineering, 7–12 September 2009, Munich. IFMBE Proceedings, Vol. 25. Springer Nature, pp. 231–234.10.1007/978-3-642-03889-1_62

2. Akhtar, A., Nguyen, M., Wan, L., Boyce, B., Slade, P., Bretl, T. (2014). Demonstration: Passive mechanical skin stretch for multiple degree-of-freedom proprioception in a hand prosthesis. In: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), Vol. 8619. Springer Verlag, pp. 413–415.

3. Antfolk, C., Björkman, A., Frank, S. O., Sebelius, F., Lundborg, G., Rosen, B. (2012). Sensory feedback from a prosthetic hand based on airmediated pressure from the hand to the forearm skin. J. Rehab. Med., 44 (8), 702–707.10.2340/16501977-1001

4. Antfolk, C., Cipriani, C., Carrozza, M. C., Balkenius, C., Björkman, A., Lundborg, G., Sebelius, F. (2013). Transfer of tactile input from an artificial hand to the forearm: Experiments in amputees and able-bodied volunteers. Disability Rehab. Assist. Technol.,8 (3), 249–254.10.3109/17483107.2012.713435

5. Antfolk, C., D’Alonzo, M., Controzzi, M., Lundborg, G., Rosen, B., Sebelius, F., Cipriani, C. (2013). Artificial redirection of sensation from prosthetic fingers to the phantom hand map on transradial amputees: Vibrotactile versus mechanotactile sensory feedback. IEEE Transact. Neural Syst. Rehab. Eng.,21 (1), 112–120.10.1109/TNSRE.2012.2217989

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. An Electro-Vibration Feedback Armband for a Prosthetic Hand;Proceedings of the 2024 4th International Conference on Robotics and Control Engineering;2024-06-27

2. Innovative Multi Vibrotactile-Skin Stretch (MuViSS) haptic device for sensory motor feedback from a robotic prosthetic hand;Mechatronics;2024-05

3. A Decade of Haptic Feedback for Upper Limb Prostheses;IEEE Transactions on Medical Robotics and Bionics;2023-11

4. A Multimodally-Sensing Digitally-Embedded Smart Skin for Prosthetic Hands to Restore Sensory Feedback for Amputees;2022 IEEE MIT Undergraduate Research Technology Conference (URTC);2022-09-30

5. Cut wires: The Electrophysiology of Regenerated Tissue;Bioelectronic Medicine;2021-02-23

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3