PCA-based approximation of a class of distributed parameter systems: classical vs. neural network approach

Author:

Bartecki K.

Abstract

Abstract In this article, an approximation of the spatiotemporal response of a distributed parameter system (DPS) with the use of the principal component analysis (PCA) is considered. Based on a data obtained by the numerical solution of a set of partial differential equations, a PCA-based approximation procedure is performed. It consists in the projection of the original data into the subspace spanned by the eigenvectors of the data covariance matrix, corresponding to its highest eigenvalues. The presented approach is carried out using both the classical PCA method as well as two different neural network structures: two-layer feed-forward network with supervised learning (FF-PCA) and single-layer network with unsupervised, generalized Hebbian learning rule (GHA-PCA). In each case considered, the effect of the approximation model structure represented by the number of eigenvectors (or, in the neural case, units in the network projection layer) on the mean square approximation error of the spatiotemporal response and on the data compression ratio is analysed. As shown in the paper, the best approximation quality is obtained for the classical PCA method as well as for the FF-PCA neural approach. On the other hand, an adaptive learning method for the GHA-PCA network allows to use it in e.g. an on-line identification scheme.

Publisher

Walter de Gruyter GmbH

Subject

Artificial Intelligence,Computer Networks and Communications,General Engineering,Information Systems,Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3