Metric correctness of pairwise comparisons in intelligent data analysis

Author:

Dvoenko Sergey D.1

Affiliation:

1. Tula State University , Tula , Russia

Abstract

Abstract In modern data analysis and machine learning, data are often represented in the form of pairwise comparisons of the elements of the data set. The pairwise comparisons immediately correspond to the similarity or dissimilarity of objects under investigation, and such a situation regularly arises in the domains of image and signal analysis, bioinformatics, expert evaluation, etc. The practical pairwise comparison functions may be incorrect in terms of potentially using them as scalar products or distances. In contrast to other approaches, we develop in this paper a technique based on the so-called metric approach, which proposes to modify the values of empirical functions so as to get scalar products or distances. The methods for obtaining the correct matrices of pairwise comparisons and for improving their conditionality are developed here.

Publisher

Walter de Gruyter GmbH

Reference27 articles.

1. Aizerman, M. A., Braverman, E. M. and Rozonoer, L. I. (1970) The Method of Potential Functions in Machine Learning Theory [in Russian]. Nauka, Moscow.

2. Bishop, R. L. and Crittenden, R. J. (1964) Geometry of Manifolds. Academic Press, NY.

3. Boyd, S., Ghaoui, L., Feron, E. and Balakrishnan, V. (1994) Linear Matrix Inequalities in System and Control Theory. SIAM, Philadelphia.

4. Cox, T. F. and Cox, M. A. A. (2001) Multidimensional Scaling. Chapman & Hall/CRC.

5. Dvoenko, S. D. (2009) Clustering and separating of a set of members in terms of mutual distances and similarities. Trans. on MLDM. IBaI Publishing, 2(2), 80–99.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3