Prediction of Match Outcomes with Multivariate Statistical Methods for the Group Stage in the UEFA Champions League

Author:

Parim Coşkun1,Güneş Mehmet Şamil1,Büyüklü Ali Hakan1,Yıldız Doğan1

Affiliation:

1. Yildiz Technical University, Department of Statistics , Istanbul , Turkey

Abstract

Abstract The aim of this study was to analyse the win, draw, and loss outcomes of soccer matches with situational variables and performance indicators. Data from group stage matches spanning the ten years between the 2010/2011 and 2019/2020 seasons in the European Champions League, were used. One-way analysis of variance (ANOVA) and Tukey HSD (honestly significant difference) tests indicated performance indicators which affected the outcome of matches. K-mean clustering, with statistically significant variables, categorized the quality of the opposition into three clusters: weak, balanced, and strong. Multidimensional scaling (MDS) and decision tree analysis were applied to each of these clusters, highlighting that performance indicators of the teams differed according to the quality of their opponent. Furthermore, according to the decision tree analysis, certain performance indicators, including scoring first and shots on target, increased the chances of winning regardless of the quality of the opposition. Finally, particular performance indicators increased the chance of winning, while others decreased this, in accordance with the quality of the opposition. These findings can help coaches develop different strategies, before or during the match, based on the quality of opponents, situational variables, and performance indicators.

Publisher

Walter de Gruyter GmbH

Subject

Physiology (medical),Physical Therapy, Sports Therapy and Rehabilitation

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3