Affiliation:
1. Shanghai Research Institute of Sports Science , Shanghai , China
2. Department of Health and Exercise Science, The College of New Jersey , New Jersey , USA
Abstract
Abstract
This study objective was to evaluate gender differences in hematological, hormonal and fitness variables among youth swimmers and to explore relationships between erythrocyte indices and aerobic and anaerobic capacity. 137 girls and 171 boys participated in the study and were divided into three groups based on their training experience. Blood samples were obtained to determine red blood cell counts, hemoglobin concentration, hematocrit, and plasma erythropoietin and testosterone levels. VO2max was assessed using a submaximal cycle protocol. 76 girls and 102 boys also undertook a Wingate test to determine their peak anaerobic power. Boys had higher (p < 0.05) means than girls for all hematological variables except for erythropoietin and these variables demonstrated an increase with training in boys. The average VO2max in l∙min-1 and peak anaerobic power in watts were also higher in boys (2.91 ± 0.08 and 547 ± 28, respectively) than girls (2.25 ± 0.07 and 450 ± 26, respectively). Modest but significant (p < 0.05) correlations were found between VO2max and red blood cell counts (r = 0.252), hemoglobin concentration (r = 0.345), or hematocrit (r = 0.345) and between peak anaerobic power and red blood cell counts (r = 0.304), hemoglobin concentration (r = 0.319) or hematocrit (r = 0.351). This study revealed relatively lower yet age- and gender-appropriate hematological, hormonal and fitness indices in youth swimmers. The gender-related differences in erythrocyte indices seem unrelated to erythropoietin and may be explained by the higher testosterone levels seen in boys. Given their correlation to both aerobic and anaerobic capacity, erythrocyte indices may be used as part of talent identification for sports.
Subject
Physiology (medical),Physical Therapy, Sports Therapy and Rehabilitation
Reference30 articles.
1. Åstrand I. Aerobic work capacity in men and women with special reference to age. Acta Physiol Scand 1960; 49: 1-92
2. Åstrand PO and Ryhming I. A nomogram for calculation of aerobic capacity (physical fitness) from pulse rate during sub-maximal work. J Appl Physiol 1954; 7: 218-221
3. Bar-Or O. The Wingate Anaerobic Test an Update on Methodology, Reliability and Validity. Sports Med 1987; 4: 381–394
4. Bencke J, Damsgaard R, Saekmose A, Jørgensen P, Jørgensen K, Klausen K. Anaerobic power and muscle strength characteristics of 11 years old elite and non-elite boys and girls from gymnastics, team handball, tennis and swimming. Scand J Med Sci Sports 2002; 12: 171-178
5. Biancotti PP, Caropreso A, Di Vincenzo GC, Ganzit GP, Gribaudo CG. Hematological status in a group of male athletes of different sports. J Sports Med Phys Fit 1992; 32: 70–75
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献