Affiliation:
1. Department of Mechanics and Applied Computer Science Faculty of Mechanical Engineering , Military University of Technology 00-908 Warszawa 46, ul. Gen. Witolda Urbanowicza 2, Poland
Abstract
Abstract
Statistically, at least 50% of all injuries experienced by police officers in the line of duty are due to assaults with blunt objects. Therefore, vests used by the police should provide not only good ballistic resistance, but also good protection against such threats. Foamed materials are possible to be used for body protectors or inserts of protective clothes. The effects of dynamic impact with beaters of different shapes onto behaviour of polymeric foamed material were determined. There were used four types of beaters: flat, cylindrical, edgy and cornered. Strikes with blunt objects such as a flat board, baseball bat, edgy brick, pavement brick or a sharp stone, to which a protective ware can be subjected, were simulated. The impact load was applied to the rectangular specimens, made of polyvinyl chloride foam, with a usage of a drop hammer. Plots of force versus compression for all the tested samples were obtained and analysed. The effects of impacts with beaters of different shapes onto foamed material samples were presented. A shape of the blunt object significantly influences crushing behaviour of the foamed material. The impact energy of a flat beater is absorbed effectively on a short distance, since it is spread on a relatively large surface. The cylindrical and edgy beaters did not cause fragmentation of the samples, however, on the upper surfaces of the samples, permanent deformations mapping the beaters shapes as well as some cracks occurred. An impact with a sharp object, for example, a cornered beater is very difficult to be neutralized by the foam material, because it is cumulated on a small area.
Subject
Mechanical Engineering,Control and Systems Engineering
Reference24 articles.
1. 1. Alcan Composites (2016), Sandwich Technology, Data sheet, Herex C70 universal structural foam, C70DATASHEET.pdf www.alcanairex.com, Alcan Airex AG, Switzerland.
2. 2. Ashby M. F. et al. (2000), Metal foams – a design guide, Butterworth-Heinemann, Oxford, UK.
3. 3. Avalle M., Belingardi G., Montanini R. (2001), Characterization of polymeric structural foams under compressive impact loading by means of energy-absorption diagram, International Journal of Impact Engineering, 25(5), 455-472.
4. 4. Bernard C.A., Bahlouli N., Wagner-Kocher C., Ahzi S., Remond Y. (2015), Impact behaviour of an innovative plasticized poly(vinyl chloride) for the automotive industry; The European Physical Journal Conferences Web of Conferences 94, DYMAT, Lugano, Switzerland.
5. 5. British Standards Institution (2003), BS 7971-8 – Protective clothing and equipment for use in violent situations and in training. Blunt trauma torso, shoulder, abdomen and genital protectors. Requirements and test methods, BSI, UK, 2003.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献