Crushing Behaviour of the PVC Foam Loaded with Beaters of Various Shapes

Author:

Bogusz Paweł1,Gieleta Roman1,Konarzewski Marcin1,Stankiewicz Michał1

Affiliation:

1. Department of Mechanics and Applied Computer Science Faculty of Mechanical Engineering , Military University of Technology 00-908 Warszawa 46, ul. Gen. Witolda Urbanowicza 2, Poland

Abstract

Abstract Statistically, at least 50% of all injuries experienced by police officers in the line of duty are due to assaults with blunt objects. Therefore, vests used by the police should provide not only good ballistic resistance, but also good protection against such threats. Foamed materials are possible to be used for body protectors or inserts of protective clothes. The effects of dynamic impact with beaters of different shapes onto behaviour of polymeric foamed material were determined. There were used four types of beaters: flat, cylindrical, edgy and cornered. Strikes with blunt objects such as a flat board, baseball bat, edgy brick, pavement brick or a sharp stone, to which a protective ware can be subjected, were simulated. The impact load was applied to the rectangular specimens, made of polyvinyl chloride foam, with a usage of a drop hammer. Plots of force versus compression for all the tested samples were obtained and analysed. The effects of impacts with beaters of different shapes onto foamed material samples were presented. A shape of the blunt object significantly influences crushing behaviour of the foamed material. The impact energy of a flat beater is absorbed effectively on a short distance, since it is spread on a relatively large surface. The cylindrical and edgy beaters did not cause fragmentation of the samples, however, on the upper surfaces of the samples, permanent deformations mapping the beaters shapes as well as some cracks occurred. An impact with a sharp object, for example, a cornered beater is very difficult to be neutralized by the foam material, because it is cumulated on a small area.

Publisher

Walter de Gruyter GmbH

Subject

Mechanical Engineering,Control and Systems Engineering

Reference24 articles.

1. 1. Alcan Composites (2016), Sandwich Technology, Data sheet, Herex C70 universal structural foam, C70DATASHEET.pdf www.alcanairex.com, Alcan Airex AG, Switzerland.

2. 2. Ashby M. F. et al. (2000), Metal foams – a design guide, Butterworth-Heinemann, Oxford, UK.

3. 3. Avalle M., Belingardi G., Montanini R. (2001), Characterization of polymeric structural foams under compressive impact loading by means of energy-absorption diagram, International Journal of Impact Engineering, 25(5), 455-472.

4. 4. Bernard C.A., Bahlouli N., Wagner-Kocher C., Ahzi S., Remond Y. (2015), Impact behaviour of an innovative plasticized poly(vinyl chloride) for the automotive industry; The European Physical Journal Conferences Web of Conferences 94, DYMAT, Lugano, Switzerland.

5. 5. British Standards Institution (2003), BS 7971-8 – Protective clothing and equipment for use in violent situations and in training. Blunt trauma torso, shoulder, abdomen and genital protectors. Requirements and test methods, BSI, UK, 2003.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3