Offline and Online Modelling of Switched Reluctance Motor Based on RBF Neural Networks

Author:

Cai Jun,Deng Zhiquan

Abstract

Due to the highly nonlinearity of the flux-linkage characteristics of Switched Reluctance Motor drives (SRM), accurately modelling is cumbersome. In this paper, the offline- trained and the online-trained Radial Basis function (RBF) neural network model are proposed for estimating the SRM flux-linkage under running conditions. To investigate the performance of the modelling schemes, the simulation and experiments have been implemented in a 12/8 structure SRM prototype. The results show that the online-trained model exhibits much better estimation accuracy and robustness than the offline-trained model. Thus, the online-trained RBF model is more suitable for SRM performance prediction and analyzing.

Publisher

Walter de Gruyter GmbH

Subject

Electrical and Electronic Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Compound control for electromagnetic linear load simulator;Transactions of the Institute of Measurement and Control;2023-04-12

2. Simulation Model for Prediction of Transient Performance Characteristics of Single–Phase Shaded Pole Motor;Journal of Electrical Engineering;2016-07-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3