Photonic MMW Generation Using PM-DPMZM for Full Duplex 32×10 Gbps RoF-WDM System

Author:

Chebra Abdennour Fellag1,Borsali Ahmed Riad2,Rouissat Mehdi3

Affiliation:

1. STIC Laboratory, Department of Telecommunication , Faculty of Technology University of Abou Bekr Belkaid , Tlemcen , Algeria

2. STIC Laboratory , Department of Telecommunication, Faculty of Technology University of Abou Bekr Belkaid , Tlemcen , Algeria

3. University Center of Nour Bachir El Bayadh , El Bayadh , Algeria

Abstract

Abstract This paper presents a study of a 32×10 Gbps Radio over Fiber and Wavelength Division Multiplexing (RoF-WDM) full-duplex system that uses Phase Modulators and a Dual-Port Mach-Zehnder Modulator (PMs-DPMZM) for bidirectional data transfer. The system employs Millimeter-Wave (MMW) signaling over optical fiber and focuses on selecting a technology that provides high transmission capacity per wavelength, improved spectral efficiency, and resistance against optical transmission impairments. The proposed method was validated using simulation results to confirm the efficiency of the proposed system in generating a 40 GHz signal and efficiently detecting and modulating the RF signals. The results demonstrate that the system exhibits strong resistance against dispersion, non-linear effects, and noise, delivering satisfactory performance for distances of up to 220 km. By analyzing the input power, the paper establishes a relationship between input power and signal quality, revealing that an optimal power of 0 dBm leads to an improved Quality Factor (QF) and reduced transmission errors. Furthermore, the evaluation of received optical power indicates the power level required to maintain an acceptable error rate, approximately -20.9690 dBm for downstream data transfer and -20.7245 dBm for upstream data transfer at the BER limit. The simulation performance also demonstrates the transmission efficiency achieved through a high Polarization Mode Dispersion (PMD) coefficient of up to 0.8. The analytical calculations conducted in this work provide valuable insights for optimizing and enhancing the performance of RoF-WDM networks.

Publisher

Walter de Gruyter GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3