Affiliation:
1. Faculty of Management Koper, University of Primorska, Cankarjeva 5, 6000 Koper, Slovenia
Abstract
Forecasting the Primary Demand for a Beer Brand Using Time Series Analysis
Market research often uses data (i.e. marketing mix variables) that is equally spaced over time. Time series theory is perfectly suited to study this phenomena's dependency on time. It is used for forecasting and causality analysis, but their greatest strength is in studying the impact of a discrete event in time, which makes it a powerful tool for marketers. This article introduces the basic concepts behind time series theory and illustrates its current application in marketing research. We use time series analysis to forecast the demand for beer on the Slovenian market using scanner data from two major retail stores. Before our analysis, only broader time spans have been used to perform time series analysis (weekly, monthly, quarterly or yearly data). In our study we analyse daily data, which is supposed to carry a lot of ‘noise’. We show that - even with noise carrying data - a better model can be computed using time series forecasting, explaining much more variance compared to regular regression. Our analysis also confirms the effect of short term sales promotions on beer demand, which is in conformity with other studies in this field.
Subject
Marketing,Organizational Behavior and Human Resource Management,Strategy and Management,Tourism, Leisure and Hospitality Management,Business and International Management,Management Information Systems
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献