Steklov problems for the p−Laplace operator involving Lq
-norm
Author:
Alaoui My Driss Morchid1, Khalil Abdelouahd El2, Touzani Abdelfattah3
Affiliation:
1. Laboratory MAIS (AMNEA Group) , Department of Mathematics, Faculty of Sciences and Technologies Moulay Ismail University of Meknes , BP 509, Boutalamine, 52000 Errachidia , Morocco 2. Department of Mathematics and Statistics , College of Science Al Imam Mohammad Ibn Saud Islamic University (IMSIU) , P.O. Box 90950 , Riyadh , KSA 3. Laboratory LAMA , Department of Mathematics , Faculty of Sciences Dhar El Mahraz University Sidi Mohamed Ben Abdellah , P.O. Box 1796 Atlas Fez , Morocco
Abstract
Abstract
In this paper, we are concerned with the study of the spectrum for the nonlinear Steklov problem of the form
{
Δ
p
u
=
|
u
|
p
-
2
u
in
Ω
,
|
∇
u
|
p
-
2
∂
u
∂
v
=
λ
‖
u
‖
q
,
∂
Ω
p
-
q
|
u
|
q
-
2
u
on
∂
Ω
,
\left\{ {\matrix{{{\Delta _p}u = {{\left| u \right|}^{p - 2}}u} \hfill & {{\rm{in}}\,\Omega ,} \hfill \cr {{{\left| {\nabla u} \right|}^{p - 2}}{{\partial u} \over {\partial v}} = \lambda \left\| u \right\|_{q,\partial \Omega }^{p - q}{{\left| u \right|}^{q - 2}}u} \hfill & {{\rm{on}}\,\partial \Omega ,} \hfill \cr } } \right.
where Ω is a smooth bounded domain in ℝ
N
(N ≥ 1), λ is a real number which plays the role of eigenvalue and the unknowns u ∈ W
1,
p
(Ω). Using the Ljusterneck-Shnirelmann theory on C
1 manifold and Sobolev trace embedding we prove the existence of an increasing sequence positive of eigenvalues (λ
k
)
k
≥1, for the above problem. We then establish that the first eigenvalue is simple and isolated.
Publisher
Walter de Gruyter GmbH
Subject
Applied Mathematics,Control and Optimization,Numerical Analysis,Analysis
Reference23 articles.
1. [1] A. Anane, Simplicit et isolation de la premiere valeur propre du p-laplacien avec poids, C. R. Acad. Sci. Paris Ser. I Math. 305, no. 16 (1987), 725-728. 2. [2] A. Anane, O. Chakrone, N. Moradi, Regularity of the solutions to a nonlinear boundary problem with indefinite weight, Bol. Soc. Paran. Mat. V. 29, no. 1 (2011), 17-23. 3. [3] A. Anane and N. Tsouli, On the second eigenvalue of the p-Laplacian, in: Nonlinear partial differential equations (Fs, 1994), Pitman Res. Notes Math. Ser. 343, Longman, Harlow, 1996, pp. 1-9. 4. [4] L. Brasco, G. Franzina, Convexity properties of Dirichlet integrals and Picone type inequalities, Kodai Math. J., 37 (2014), 769-799.10.2996/kmj/1414674621 5. [5] J. I. Diaz, Nonlinear partial differential equations and free boundaries, Vol. I, Elliptic Equations, London, (1985)
|
|