Steklov problems for the p−Laplace operator involving Lq -norm

Author:

Alaoui My Driss Morchid1,Khalil Abdelouahd El2,Touzani Abdelfattah3

Affiliation:

1. Laboratory MAIS (AMNEA Group) , Department of Mathematics, Faculty of Sciences and Technologies Moulay Ismail University of Meknes , BP 509, Boutalamine, 52000 Errachidia , Morocco

2. Department of Mathematics and Statistics , College of Science Al Imam Mohammad Ibn Saud Islamic University (IMSIU) , P.O. Box 90950 , Riyadh , KSA

3. Laboratory LAMA , Department of Mathematics , Faculty of Sciences Dhar El Mahraz University Sidi Mohamed Ben Abdellah , P.O. Box 1796 Atlas Fez , Morocco

Abstract

Abstract In this paper, we are concerned with the study of the spectrum for the nonlinear Steklov problem of the form { Δ p u = | u | p - 2 u in Ω , | u | p - 2 u v = λ u q , Ω p - q | u | q - 2 u on Ω , \left\{ {\matrix{{{\Delta _p}u = {{\left| u \right|}^{p - 2}}u} \hfill & {{\rm{in}}\,\Omega ,} \hfill \cr {{{\left| {\nabla u} \right|}^{p - 2}}{{\partial u} \over {\partial v}} = \lambda \left\| u \right\|_{q,\partial \Omega }^{p - q}{{\left| u \right|}^{q - 2}}u} \hfill & {{\rm{on}}\,\partial \Omega ,} \hfill \cr } } \right. where Ω is a smooth bounded domain in ℝ N (N ≥ 1), λ is a real number which plays the role of eigenvalue and the unknowns uW 1, p (Ω). Using the Ljusterneck-Shnirelmann theory on C 1 manifold and Sobolev trace embedding we prove the existence of an increasing sequence positive of eigenvalues (λ k ) k ≥1, for the above problem. We then establish that the first eigenvalue is simple and isolated.

Publisher

Walter de Gruyter GmbH

Subject

Applied Mathematics,Control and Optimization,Numerical Analysis,Analysis

Reference23 articles.

1. [1] A. Anane, Simplicit et isolation de la premiere valeur propre du p-laplacien avec poids, C. R. Acad. Sci. Paris Ser. I Math. 305, no. 16 (1987), 725-728.

2. [2] A. Anane, O. Chakrone, N. Moradi, Regularity of the solutions to a nonlinear boundary problem with indefinite weight, Bol. Soc. Paran. Mat. V. 29, no. 1 (2011), 17-23.

3. [3] A. Anane and N. Tsouli, On the second eigenvalue of the p-Laplacian, in: Nonlinear partial differential equations (Fs, 1994), Pitman Res. Notes Math. Ser. 343, Longman, Harlow, 1996, pp. 1-9.

4. [4] L. Brasco, G. Franzina, Convexity properties of Dirichlet integrals and Picone type inequalities, Kodai Math. J., 37 (2014), 769-799.10.2996/kmj/1414674621

5. [5] J. I. Diaz, Nonlinear partial differential equations and free boundaries, Vol. I, Elliptic Equations, London, (1985)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3