Affiliation:
1. Ibn Tofail University , Kenitra , Morocco .
Abstract
Abstract
Let Ω ⊂ ℝn
be an open set. We give a new characterization of zero trace functions
f
∈
𝒞
(
Ω
¯
)
∩
W
0
1
,
p
(
.
)
(
Ω
)
f \in \mathcal{C}\left( {\bar \Omega } \right) \cap W_0^{1,p\left( . \right)}\left( \Omega \right)
. If in addition Ω is bounded, then we give a sufficient condition for which the mapping
f
↦
ℒ
p
(
.
)
,
f
Ω
f \mapsto \mathcal{L}_{p\left( . \right),f}^\Omega
from a set of real extended functions f : ∂Ω −→ ℝ to the nonlinear harmonic space (Ω,ℋℒ
p
(.)
) is injective, where
ℒ
p
(
.
)
,
f
Ω
\mathcal{L}_{p\left( . \right),f}^\Omega
denotes the Perron-Wiener-Brelot solution for the Dirichlet problem:
{
ℒ
p
(
.
)
u
:
=
-
Δ
p
(
.
)
u
+
ℬ
(
.
,
u
)
=
0
i
n
Ω
;
u
=
f
o
n
∂
Ω
,
\left\{ {\matrix{{{\mathcal{L}_{p\left( . \right)}}u: = - {\Delta _{p\left( . \right)}}u + \mathcal{B}\left( {.,u} \right) = 0} \hfill & {in\,\Omega ;} \hfill \cr {u = f} \hfill & {on\,\partial \Omega ,} \hfill \cr } } \right.
where ℬ is a given Carathéodory function satisfies some structural conditions.
Subject
Applied Mathematics,Control and Optimization,Numerical Analysis,Analysis
Reference19 articles.
1. [1] A. Baalal, Théorie du potentiel pour des opérateurs elliptiques nonlinéaires du second ordre ‘a coefficients discontinus, Potential Anal., 15 (2001), n.o. 3, 255-271.
2. [2] A. Baalal and M. Berghout, The Dirichlet problem for nonlinear elliptic equations with variable exponent, J. Appl. Anal. Comput. Vol.9 (2019), no. 1, 295-313.
3. [3] A. Baalal and A. Boukricha, Potential Theory for quasilinear Elliptic Equations, Electron. J. Differ. Equ., Vol. 2001 (2001), no. 31, 1-20.
4. [4] A. Baalal and A. Qabil, The Keller-Osserman condition for quasilinear elliptic equations in Sobolev spaces with variable exponent, Int. Journal of Math. Analysis, 14 (2014), no. 8, 669-681.
5. [5] A. Baalal and A. Qabil, Harnack inequality and continuity of solutions for quasilinear elliptic equations in Sobolev spaces with variable exponent, Nonl. Analysis and Differential Equations, 2 (2014), no. 2, 69-81.