Affiliation:
1. Laboratory LMACS , FST of Beni Mellal, Sultan Moulay Slimane University , Morocco .
Abstract
Abstract
In this paper, we will use the topological degree, introduced by Berkovits, to prove existence of weak solutions to a Neumann boundary value problems for the following nonlinear elliptic equation
-
d
i
v
a
(
x
,
u
,
∇
u
)
=
b
(
x
)
|
u
|
p
-
2
u
+
λ
H
(
x
,
u
,
∇
u
)
,
- div\,\,a\left( {x,u,\nabla u} \right) = b\left( x \right){\left| u \right|^{p - 2}}u + \lambda H\left( {x,u,\nabla u} \right),
where Ω is a bounded smooth domain of
N
.
Subject
Applied Mathematics,Control and Optimization,Numerical Analysis,Analysis
Reference33 articles.
1. [1] A. Abbassi, E. Azroul, A. Barbara, Degenerate p(x)-elliptic equation with second membre in L1. Advances in Science, Technology and Engineering Systems Journal. Vol. 2, No. 5 (2017), 45-54.
2. [2] A. Abbassi, C. Allalou and A. Kassidi, Existence of weak solutions for nonlinear p-elliptic problem by topological degree, Nonlinear Dyn. Syst. Theory, 20(3) (2020) 229-241.
3. [3] S. Aizicovici, N.S. Papageorgiou, V. Staicu, Nodal solutions for nonlinear nonhomogeneous Neumann equations, Topol. Methods Nonlinear Anal. 43 (2014) 421-438.
4. [4] Y. Akdim, E. Azroul and A. Benkirane, Existence of solutions for quasilinear degenerate elliptic equations. Electronic Journal of Differential Equations (EJDE), 2001, vol. 2001, p. Paper No. 71, 19.
5. [5] C. Atkinson and C. R. Champion, Some boundary value problems for the equation ∇.(| ∇ ϕ |N∇ ϕ) = 0, Quart. J. lllcch. Appl. Math. 37 (1984), 401-419.
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献