Extended convergence of a sixth order scheme for solving equations under ω–continuity conditions

Author:

Regmi Samundra1,Argyros Christopher I.2,Argyros Ioannis K.3,George Santhosh4

Affiliation:

1. Learning Commons, University of North Texas at Dallas , Dallas, TX, 75038, USA

2. Department of Computer Science , University of Oklahoma , Norman, OK 73071, USA

3. Department of Mathematical Sciences , Cameron University , Lawton, OK 73505, USA

4. Department of Mathematical and Computational Sciences , National Institute of Technology , Karnataka , India -575 025

Abstract

Abstract The applicability of an efficient sixth convergence order scheme is extended for solving Banach space valued equations. In previous works, the seventh derivative has been used not appearing on the scheme. But we use only the first derivative that appears on the scheme. Moreover, bounds on the error distances and results on the uniqueness of the solution are provided (not given in earlier works) based on ω–continuity conditions. Numerical examples complete this article.

Publisher

Walter de Gruyter GmbH

Subject

Applied Mathematics,Control and Optimization,Numerical Analysis,Analysis

Reference13 articles.

1. [1] Amat, S. Busquier,S., Convergence and numerical analysis of two-step Steffensen’s methods, Comput. Math. Appl. 49 (2005) 13-22.10.1016/j.camwa.2005.01.002

2. [2] Amat, S. Busquier, S.,A two-step Steffensen’s under modified convergence conditions, J. Math. Anal. Appl. 324 (2006) 1084-1092.10.1016/j.jmaa.2005.12.078

3. [3] I.K. Argyros, Computational theory of iterative methods. Series: Studies in Computational Mathematics, 15, Editors: C.K.Chui and L. Wuytack, Elsevier Publ. Co. New York, U.S.A, 2007.

4. [4] I.K. Argyros, S. Hilout, Weaker conditions for the convergence of Newton’s method. J. Complexity 28 (2012) 364–387.

5. [5] I. K.Argyros, A. A. Magréñan, A contemporary study of iterative methods, Elsevier (Academic Press), New York, 2018.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3