Marker-assisted selection in C. oleifera hybrid population

Author:

Feng Jin-Ling1,Jiang Ying1,Yang Zhi-Jian1,Chen Shi-Pin1,El-Kassaby Yousry A.2,Chen Hui1

Affiliation:

1. College of Forestry , Fujian Agriculture and Forestry University , Fuzhou 350002 , China

2. Department of Forest and Conservation Sciences, Faculty of Forestry , University of British Columbia , 2424 Main Mall, Vancouver, BC V6T 1Z4 , Canada

Abstract

Abstract Marker-assisted selection (MAS) is implemented to improve Camellia oleifera yield and fruit attributes for meeting China’s increased demand for new varieties development. We conducted three-generational (G0, G1, and G2) hybridization (diallel mating) and selection experiment and used Sequence-Related Amplified Polymorphism (SRAP). SRAP markers to investigate their utility in a MAS framework. The utilized SRAP markers were instrumental in hybrid authenticity and the identification of matroclinal or patroclinal inheritance presence, thus guiding mating pair selection and direction (their role as male or females). Across the studied 3 generations, estimates of genetic diversity parameters showed steady increase with percentage increase of ((G0 to G1 and G1 to G2) 9.25 and 9.05: observed number of alleles; 3.12 and 7.80: means effective number of alleles; 12.35 and 22.34: Nei‘s gene diversity; and 14.21 and 21.77: Shannon‘s index), indicating lack of diversity reduction associated with selection. Estimates of genetic distance and their correlation with heterosis were useful in guiding selection of mating pairs for achieving the desired yield and fruit attributes (fruit diameter, height, weight, and index, peel thickness, number of seeds per fruit, seed weight per fruit, and seed rate). Most yield and fruit attributes exhibited high broad-sense heritability with increasing trend over generation intervals, indicating the increased potential of hybrid breeding for this species.

Publisher

Walter de Gruyter GmbH

Subject

Genetics,Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3