Micropropagation and in vitro rooting of Robinia pseudoacacia L. recalcitrant genotypes

Author:

Szyp-Borowska Iwona1,Ukalska Joanna2,Wojda Tomasz1,Sułkowska Małgorzata1,Klisz Marcin1

Affiliation:

1. Forest Research Institute , Department of Silviculture and Genetics of Forest Trees , Braci Leśnej 3, Sękocin Stary, 05-090 Raszyn , Poland

2. Warsaw University of Life Sciences , Institute of Forest Sciences , Department of Forest Management Planning, Dendrometry and Forest Economics, Laboratory of Dendrometry and Forest Productivity , Nowoursynowska 159, 02-776 Warsaw , Poland

Abstract

Abstract In forest production, there is an emerging tendency towards the planting of fast-growing trees as attractive, renewable energy sources. Hence, efforts were made to develop a method of micropropagation by organogenesis of seven clones of black locust (Robinia pseudoacacia L.) that are resistant to propagation by traditional vegetative methods, as well as one plus tree (no. 9755) at the age of 60, to see if the age of the mother plant is a limitation in the micropropagation of black locust trees. Overall results suggest that Murashige and Skoog medium supplemented with 30 g l−1 sucrose, 0.6 mg l−1 6-benzylaminopurine (BAP) and 0.1 mg l−1 naphthalene acetic acid (NAA) is better for the propagation of each genotype of R. pseudoacacia than Woody Plant Medium with the same growth regulators, and the age of the donor plant does not affect the organogenic potential. Recalcitrance to adventitious rooting from adventitious shoot formation is a major limitation for the clonal micropropagation of forest trees. Our results showed that although the roots were also formed spontaneously in the growth medium without growth hormones for the tested black locust clones, the application of auxin increased the total root length compared to that in the medium with active carbon and control. A significant effect of the additives of hormone and sucrose on the total root length was found. Increasing the sucrose concentration stimulated the induction of roots in each of the tested concentrations (5, 10, 15 or 20 g l−1). Additionally, the change in sugar dose in the rooting medium caused significant differences in total root length.

Publisher

Walter de Gruyter GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3