Affiliation:
1. AURA Devices, Inc ., Wilmington , DE , USA
Abstract
Abstract
Fat-free mass (FFM) estimation has dramatic importance for body composition evaluation, often providing a basis for treatment of obesity and muscular dystrophy. However, current methods of FFM estimation have several drawbacks, usually related to either cost-effectiveness and equipment size (dual-energy X-ray absorptiometry (DEXA) scan) or model limitations. In this study, we present and validate a new FFM estimation model based on hand-to-hand bioimpedance analysis (BIA) and arm volume. Forty-two participants underwent a full-body DEXA scan, a series of anthropometric measurements, and upper-body BIA measurements with the custom-designed wearable wrist-worn impedance meter. A new two truncated cones (TTC) model was trained on DEXA data and achieved the best performance metrics of 0.886 ± 0.051 r2, 0.052 ± 0.009 % mean average error, and 6.884 ± 1.283 kg maximal residual error in FFM estimation. The model further demonstrated its effectiveness in Bland-Altman comparisons with the skinfold thickness-based FFM estimation method, achieving the least mean bias (0.007 kg). The novel TTC model can provide an alternative to full-body BIA measurements, demonstrating an accurate FFM estimation independently of population variables.
Subject
Biomedical Engineering,Biophysics
Reference20 articles.
1. World Obesity Federation. Obesity and overweight. [Updated 2021 Jun 21
2. cited 2022 Mar 3]. Available from: https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight.
3. Deurenberg P., Weststrate J., Seidell J. Body mass index as a measure of body fatness: Age- and sex-specific prediction formulas Br. J. Nutr. 1991, 65 (2): 105-114. https://doi.org/10.1079/BJN19910073
4. Peterson M., Czerwinski S., Siervogel R. Development and validation of skinfold-thickness prediction equations with a 4-compartment model. Am. J. Clin. Nutr. 2003, 77 (5): 11861191. https://doi.org/10.1093/ajcn/77.5.1186
5. Shaheen A., Javed N., Azam F., Khan M., Mahboob A.S., Mumtaz S. Comparison of Bioelectrical Impedance and Navy Seal Formula to Measure Body Composition in Medical Students. Cureus 2019, 11 (5): e4723. https://doi.org/10.7759/cureus.4723
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献