Smart needle electrical bioimpedance to provide information on needle tip relationship to target nerve prior to local anesthetic deposition in peripheral nerve block (USgPNB) procedures

Author:

Whelton Edel12,Helen Lisa1,O’Donnell Brian3,O’Sullivan Martin3,Ugwah Justina12,Messina Walter1,Wang Yineng1,O’Mahoney Niamh2,Moore Eric12

Affiliation:

1. 1 Life Science Interface, Tyndall National Institute, University College , Cork , Ireland

2. 3 School of Chemistry, University College Cork , Ireland

3. 2 Cork University Hospital , Cork , Ireland

Abstract

Abstract Ultrasound guided peripheral nerve block (USgPNB) refers to anaesthetic techniques to deposit local anesthetic next to nerves, permitting painful surgery without necessitating general anesthesia. Needle tip position prior to local anesthetic deposition is a key determinant of block success and safety. Nerve puncture and intra-neural injection of local anesthetic can cause permanent nerve injury. Currently ultrasound guidance is not sufficiently sensitive to reliably detect needle to nerve proximity. Feedback with bioimpedance data from the smart needle tip might provide the anesthetist with information as to the relationship between the needle tip and the target nerve prior to local anesthetic deposition. Bioimpedance using a smart needle integrated with a two-electrode impedance sensor has been developed to determine needle to nerve proximity during USgPNB. Having obtained all necessary ethical and regulatory approvals, in vivo data on brachial plexus, vagus, femoral and sciatic nerves were obtained from seven pig models using the smart needle bioimpedance system. The excision and histological analysis of above peripheral nerves and observation of the architecture and structure of nerves by means of histology allow the calculation of the ratios of connective tissue to neural tissue to determine the influence of this variable on absolute impedance. The ratio results give extra clinical data and explain the hetrogeneity of impedance data in the pig models and the hypothesis that connective tissue with intra-neural fat has higher impedance than neural tissue.

Publisher

Walter de Gruyter GmbH

Subject

Biomedical Engineering,Biophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3