Effect of Fire on Reinforced Concrete Beams with FRP and Conventional Steel at Limited Time of Fire

Author:

Ghobashy Mohamed Atef1,Hilal Amr Mohamed2,Ibrahim Mohamed Abdel Razik2

Affiliation:

1. 1 Department of Engineering and Construction Technology , Al-Obour Institute for Engineering and Technology , Kilo 31, Cairo-Ismailia Desert Road , Egypt .

2. 2 Department Faculty of Engineering , AL-AZHAR University , Egypt .

Abstract

Abstract The aim of this study is to investigate the behavior of RC concrete beams reinforced with basalt, carbon, glass fiber reinforced polymer bars and conventional steel. A comparison between the results has been performed to investigate and study the effect of fire on reinforced concrete beams considering the following items: (flexural capacity, deflection behavior and crack pattern). It is noticeable that the use of FRP bars significantly increased the ultimate load of the specimens, where the percentage of increase ranged between 34 - 73 % of the ultimate load of the specimen C-S under static load. The greatest ultimate load was reached the beam that was reinforced with carbon bars (CFRP). It was also noticed able that the use of FRP rods significantly increases the deflection of the beams. The percentage of increase was between 45 - 170 % of the final deflection of the C-S specimen under static load. It was noted that the effect of the fire on the beams reinforced with fiber bars (FRP), where the efficiency of bearing capacity of beams after fire decreases by 11 to 18 % of the actual efficiency of bearing capacity of beams control. As for the beam reinforced with conventional steel bars, its efficiency was reduced by 15 % from the actual capacity.

Publisher

Walter de Gruyter GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3