Affiliation:
1. Institute of Mathematics , University of Warwick , Coventry , United Kingdom
Abstract
Abstract
Fix a positive integer N ≥ 2. For a real number x ∈ [0, 1] and a digit i ∈ {0, 1,..., N − 1}, let Π
i
(x, n) denote the frequency of the digit i among the first nN-adic digits of x. It is well-known that for a typical (in the sense of Baire) x ∈ [0, 1], the sequence of digit frequencies diverges as n →∞. In this paper we show that for any regular linear transformation T there exists a residual set of points x ∈ [0,1] such that the T -averaged version of the sequence (Π
i
(x, n))
n
also diverges significantly.
Subject
General Earth and Planetary Sciences,General Environmental Science
Reference21 articles.
1. [1] ALBEVERIO, S.—PRATSIOVYTYI, M.—TORBIN, G.: Topological and fractal properties of subsets of real numbers which are not normal, Bull. Sci. Math. 129 (2005), 615–630.10.1016/j.bulsci.2004.12.004
2. [2] AVENI, A.—LEONETTI, P.: Most numbers are not normal, ArXiv:2101.03607.
3. [3] BIRKHOFF, G. D.: Proof of the ergodic theorem, Proc. Nat. Acad. Sci. U.S.A. 17 (1931), no. 12, 656–660.
4. [4] BOREL, É.: Les probabilités dénombrables et leurs applications arithmétiques, Rend. Circ. Mat. Palermo 27 (1909), 247–271.10.1007/BF03019651
5. [5] CALUDE, C.—ZAMFIRESCU, T.: Most numbers obey no probability laws.In: Automata and Formal Languages, Vol. VIII (Salgótarján, 1996). Publ. Math. Debrecen 54 (1999), suppl., pp. 619–623.