Towards the Application of Mesostructures in 3D Concrete Printing – Evaluating Load-bearing Performance

Author:

Westerlind Helena1,Vargas José Hernández2,Silfwerbrand Johan3

Affiliation:

1. 1 Postdocoral researcher, KTH Royal Institute of Technology, School of Architecture , Osquars backe 5, SE 100 44 Stockholm , Sweden

2. 2 PhD. Candidate, KTH Royal Institute of Technology , Dept. of Civil & Architectural Engineering, Div. of Concrete Structures , Brinellvägen 23, SE 100 44 Stockholm , Sweden

3. 3 Professor, KTH Royal Institute of Technology , Dept. of Civil & Architectural Engineering, Div. of Concrete Structures , Brinellvägen 23, SE 100 44 Stockholm , Sweden

Abstract

Abstract In concrete structures, material performance is typically determined at the level of the concrete mix (the microscale) and the overall shape and dimensions of a building element (the macroscale). However, recent developments in the field of 3D Concrete Printing (3DCP) are demonstrating that the design of concrete now also can take place at a previously impossible intermediate scale involving the shaping and placement of the material at the level of the printing nozzle (the mesoscale). By focusing directly on the design of print paths, advanced surface effects and internal porous material distributions can be achieved that significantly affect the aesthetic experience and structural performance of 3DCP structures. This ability to design the distribution of concrete according to local architectural, structural, and functional design criteria is an especially interesting application of 3DCP that could be exploited to customise material performance while at the same time optimising material use and reducing the self-weight of building elements. This paper specifically examines how four different three-dimensional print patterns produce distinct material structures at the mesoscale (mesostructures) and presents an experimental procedure for evaluating their load-bearing capacity.

Publisher

Walter de Gruyter GmbH

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3