Hydrogen sulfide, microbiota, and sulfur amino acid restriction diet

Author:

Wang Rui1

Affiliation:

1. Department of Biology , York University , Toronto , Ontario , Canada

Abstract

Abstract Eukaryotes and microbiota produce H2S, using the same substrates and enzymes which constitute the reverse-trans-sulfuration and transsulfuration pathways. The homeostasis of gut microbiota impacts on the structural and functional integrity of gut epithelial barrier. Microbiota also serve as signalling sources to inform the host of the metabolism and functional changes. Microbiota dysbiosis negatively affect human health, contributing to diseases like obesity, diabetes, inflammatory bowel diseases, and asthma. Not by coincidence, these pathological conditions are also closely related to the abnormal metabolism and function of H2S signalling.H2S serves as a bacterial signal to the host and the host-produced H2S impacts on the population and size of microbiota. These bi-directional interactions become especially important for the digestion and utilization of sulfur amino acid in diet. Dietary restriction of sulfur amino acid increases the endogenous production of H2S by the host and consequently offers many health benefits. It, on the other hand, decreases the nutritional supply to the microbiota, which could be remedied by the co-application of prebiotics and probiotics. It is strategically sound to target the expression of H2S-producing enzymes in different organs to slow aging processes in our body and promote better health.

Publisher

Walter de Gruyter GmbH

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3