Research on physico-chemical pretreatment of wastewater from the production of wood coating materials

Author:

Żak Sławomir1,Rauckyte-Żak Teresa1,Laurinavičius Alfredas2,Siudziński Paweł3

Affiliation:

1. Department of Chemical Technology and Engineering, University of Technology and Life Sciences, ul. Seminaryjna 3, 85-326 Bydgoszcz, Poland

2. Department of Environmental Engineering, Vilnius Gediminas Technical University, Sauletekio al. 11, LT-10223 Vilnius-40, Lithuania

3. Department of Research and Implementation, Projprzem-Eko Sp. z o.o., ul. Osiedlowa 1, 89-200 Zamość n. Bydgoszcz, Poland

Abstract

Abstract This paper presents the results of the research conducted on the installation designed for physico-chemical pretreatment of technological wastewater in the volume of up to 5.0 m3/day discharged from the production of protective and decorative coating materials used for wooden surfaces. The subject-matter installation constructed on a mobile pallet, consisted of a storage-averaging tank where concentrations were equalised with the use of circulation aeration and mixing. A variant, preliminary pre-oxidation with the use of hydrogen peroxide was conducted in this tank. A substantial installation set for the wastewater treatment plant consisted of two preliminary tube reactors, one cylindrical-conical processing reactor, stations for preparing and dispensing reagents and the sediment dewatering station. Considerable reductions in main chemical indicators of water pollution were obtained in the installation: both total suspended solids (TSS) and ether extract (EE) - more than 98%, chemical oxygen demand (COD) - 46-54%, biochemical oxygen demand (BOD5) - 39-46%, and free formaldehyde (HCHO) - 14-27% due to the use of pre-oxidation and the acid - alkaine double coagulation by applying the ALCAT 105 - SAX 25 system. The use of pre-oxidation with hydrogen peroxide in doses 250.0-450.0 mg/l and then two-stage coagulation resulted in an increase in the reduction of: COD and BOD5 by ca 10-15%, and HCHO by ca 58-66% with reference to the water pretreatment without pre-oxidation. The assessment of sediments formed during the process of pretreatment was made determining the leachable forms of metals (Cu, Ni and Ti) according to methodology of TCLP in compliance with the US EPA Method 1311.

Publisher

Walter de Gruyter GmbH

Subject

Environmental Chemistry,Environmental Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3