Estimating Rainfall Erosivity Factor Using Future Climate Projection in the Myjava Region (Slovakia)

Author:

Valent Peter12,Výleta Roman2

Affiliation:

1. Vienna University of Technology , Vienna , Austria

2. Slovak University of Technology in Bratislava , Bratislava , Slovakia

Abstract

Abstract Rainfall erosivity factor (R) of the USLE model is one of the most popular indicators of areas potentially susceptible to soil erosion. Its value is influenced by the number and intensity of extreme rainfall events. Since the regional climate models expect that the intensity of heavy rainfall events will increase in the future, the currently used R-factor values are expected to change as well. This study investigates possible changes in the values of R-factor due to climate change in the Myjava region in Slovakia that is severely affected by soil erosion. Two rain gauge stations with high-resolution 1-minute data were used to build a multiple linear regression model (r 2 = 0.98) between monthly EI 30 values and other monthly rainfall characteristics derived from low-resolution daily data. The model was used to estimate at-site R-values in 13 additional rain gauge stations homogeneously dispersed over the whole region for four periods (1981–2010, 2011–2040, 2041–2070, 2071–2100). The at-site estimates were used to create R-factor maps using a geostatistical approach. The results showed that the mean R-factor values in the region might change from 429 to as much as 520 MJ.mm.ha−1.h−1.yr−1 in the second half of the 21st century representing a 20.5% increase.

Publisher

Walter de Gruyter GmbH

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. THE IMPORTANCE OF CROPS AND CROP RESIDUES IN PREVENTING THE SOIL LOSS BY WATER EROSION OUT OF THE VEGETATION SEASON;23rd SGEM International Multidisciplinary Scientific GeoConference Proceedings 2023, Water Resources. Forest, Marine and Ocean Ecosystems, Vol 23, Issue 3.1;2023-10-01

2. Erosivity Factor of the Revised Universal Soil Loss Equation (RUSLE) - A Systematized Review;Current World Environment;2023-08-31

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3