Performance of an automated process model discovery – the logistics process of a manufacturing company

Author:

Halaška Michal1,Šperka Roman1

Affiliation:

1. Silesian University in Opava , Opava , Czech Republic

Abstract

Abstract The simulation and modelling paradigms have significantly shifted in recent years under the influence of the Industry 4.0 concept. There is a requirement for a much higher level of detail and a lower level of abstraction within the simulation of a modelled system that continuously develops. Consequently, higher demands are placed on the construction of automated process models. Such a possibility is provided by automated process discovery techniques. Thus, the paper aims to investigate the performance of automated process discovery techniques within the controlled environment. The presented paper aims to benchmark the automated discovery techniques regarding realistic simulation models within the controlled environment and, more specifically, the logistics process of a manufacturing company. The study is based on a hybrid simulation of logistics in a manufacturing company that implemented the AnyLogic framework. The hybrid simulation is modelled using the BPMN notation using BIMP, the business process modelling software, to acquire data in the form of event logs. Next, five chosen automated process discovery techniques are applied to the event logs, and the results are evaluated. Based on the evaluation of benchmark results received using the chosen discovery algorithms, it is evident that the discovery algorithms have a better overall performance using more extensive event logs both in terms of fitness and precision. Nevertheless, the discovery techniques perform better in the case of smaller data sets, with less complex process models. Typically, automated discovery techniques have to address scalability issues due to the high amount of data present in the logs. However, as demonstrated, the process discovery techniques can also encounter issues of opposite nature. While discovery techniques typically have to address scalability issues due to large datasets, in the case of companies with long delivery cycles, long processing times and parallel production, which is common for the industrial sector, they have to address issues with incompleteness and lack of information in datasets. The management of business companies is becoming essential for companies to stay competitive through efficiency. The issues encountered within the simulation model will be amplified through both vertical and horizontal integration of the supply chain within the Industry 4.0. The impact of vertical integration in the BPMN model and the chosen case identifier is demonstrated. Without the assumption of smart manufacturing, it would be impossible to use a single case identifier throughout the entire simulation. The entire process would have to be divided into several subprocesses.

Publisher

Walter de Gruyter GmbH

Subject

Management of Technology and Innovation,Industrial and Manufacturing Engineering,Strategy and Management,Management Information Systems

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3