Forgotten partners and function regulators of inducible metallothioneins

Author:

Pavić Mirela1,Turčić Petra2,Ljubojević Marija3

Affiliation:

1. Department of Anatomy, Histology and Embryology, Faculty of Veterinary Medicine , University of Zagreb , Zagreb , Croatia

2. Department of Pharmacology, Faculty of Pharmacy and Biochemistry , University of Zagreb , Zagreb , Croatia

3. Molecular Toxicology Unit, Institute for Medical Research and Occupational Health , Zagreb , Croatia

Abstract

Abstract Metallothioneins are peculiar cysteine rich, heat resistant, small cellular plasma proteins expressed through almost all life forms. The currently established biological functions of metallothioneins are the homeostasis of essential metals and protection against toxic transitional metals (TM) alongside defence from oxidative stress by direct scavenging of reactive oxygen and nitrogen species (ROS and RNS). In mammals, among the four main evolutionary conserved forms, only the ubiquitously expressed metallothionein 1 and 2 (here abbreviated as MT) are inducible by TM, oxidative stress, glucocorticoids and starvation among various other stimuli. However, more than sixty years after being discovered, metallothioneins still bear unresolved issues about their possible physiological function and regulation. The biological function of MTs has still not been associated with the in vitro-demonstrated capacity of MT interaction with cellular molecules glutathione (GSH) or adenosine triphosphate (ATP), or with the possibility of direct iron-MT binding in the reducing intracellular environment of some organelles, e.g. lysosomes. Iron as the most abundant cellular TM is also one of the main physiological sources of ROS. Moreover, iron exhibits strain, sex and age differences that reflected ROS generation and MT induction in (patho)physiology and toxicology studies. A recent study showed that iron sex differences follows expression of both ferritin and MT leading to wide implications from essential TM interconnectivity to aging. This review places emphasis on biochemically proven but physiologically ignored interactions of MT with iron to stimulate advanced research for establishing a wide frame of the biological roles of MTs important for health and longevity.

Publisher

Walter de Gruyter GmbH

Subject

Public Health, Environmental and Occupational Health,Toxicology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3