Affiliation:
1. Institute of Environmental Engineering and Biotechnology , University of Opole , ul. kard. B. Kominka 6, 45-035 Opole , Poland , phone +48 77 401 60 56
Abstract
Abstract
Decomposition of cellulose to glucose requires complex cooperation of glycoside hydrolase enzymes. As a result of glycoside β-1,4 bonds hydrolysis, shorter chains of cellulose, oligodextrin, cellobiose and glucose are created. A number of bacteria and fungi demonstrate the capacity to degrade cellulose. Their activity can be assessed with the use of qualitative and quantitative methods. Qualitative methods with the use of e.g. Congo red, are used in screening studies, however, they do not provide information about the quantity of the produced enzyme. Spectrophotometric methods are more accurate and they measure the quantities of reducing sugars with the use of appropriate substrates, e.g. carboxymethylcellulose is used to determine endoglucanases, avicel cellulose to determine exoglucanases and Whatman filter paper to determine total cellulolytic activity. Activity of microorganisms depends not only on their species or type but also, among others, on substratum composition, cultivation conditions and the appropriate selection of parameters of the carried out enzymatic reactions.
Subject
Ecology,Education,Environmental Chemistry,Environmental Engineering
Reference50 articles.
1. [1] Poszytek K. Mikrobiologiczna utylizacja celulozy (Microbial cellulose utilization). Post Mikrobiol. 2016;55:2:132-46. Available from: http://pm.microbiology.pl/web/archiwum/vol5522016132.pdf.
2. [2] Eveleigh DE, Mandels M, Andreotti R, Roche Ch. Measurement of saccharifying cellulase. Biotechnol Biofuels. 2009;2:21. DOI: 10.1186/1754-6834-2-21.
3. [3] Reddy KV, Vijayalashmi T, Ranjit P, Raju MN. Characterization of some efficient cellulase producing bacteria isolated from pulp and paper mill effluent contaminated soil. Braz Arch Biol Technol. 2017;60:e17160226. DOI: 10.1590/1678-4324-2017160226.
4. [4] Juturu V, Chuan Wu J. Microbial cellulases: Engineering, production and applications. Renew Sust Energy Rev. 2014;33:188-203. DOI: 10.1016/j.rser.2014.01.077.
5. [5] Horn SJ, Vaaje-Kolstad G, Westereng B, Eijsink VGH. Novel enzymes for the degradation of cellulose. Biotechnol Biofuels. 2012;5:45. DOI: 10.1186/1754-6834-5-45.
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献