Validation of the accuracy of geodetic automated measurement system based on GNSS platform for continuous monitoring of surface movements in post-mining areas
Author:
Sokoła-Szewioła Violetta1ORCID, Siejka Zbigniew2ORCID
Affiliation:
1. Faculty of Mining, Safety Engineering and Industrial Automation , Silesian University of Technology , Akademicka 2 , Gliwice , Poland 2. Faculty of Environmental Engineering and Land Surveying , University of Agriculture in Krakow , Al. Mickiewicza 24/28 , Kraków , Poland
Abstract
Abstract
The problem involving the monitoring of surface ground movements in post-mining areas is particularly important during the period of mine closures. During or after flooding of a mine, mechanical properties of the rock mass may be impaired, and this may trigger subsidence, surface landslides, uplift, sinkholes or seismic activity. It is, therefore, important to examine and select updating methods and plans for long-term monitoring of post-mining areas to mitigate seismic hazards or surface deformation during and after mine closure. The research assumed the implementation of continuous monitoring of surface movements using the Global Navigation Satellite System (GNSS) in the area of a closed hard coal mine ‘Kazimierz-Juliusz’, located in Poland. In order to ensure displacement measurement results with the accuracy of several millimetres, the accuracy of multi-GNSS observations carried out in real time as a combination of four global navigation systems, Global Positioning System (GPS), Globalnaja Navigacionnaja Sputnikova Sistema (GLONASS), Galileo and BeiDou, was determined. The article presents the results of empirical research conducted at four reference points. The test observations were made in variants comprising measurements based on: GPS, GPS and GLONASS systems, GPS, GLONASS and Galileo systems, GPS, GLONASS, Galileo and BeiDou systems. For each adopted solution, daily measurement sessions were performed using the RTK technique. The test results were subjected to accuracy analyses. Based on the obtained results, it was found that GNSS measurements should be carried out with the use of three navigation systems (GPS, GLONASS, Galileo), as an optimal solution for the needs of continuous geodetic monitoring in the area of the study.
Publisher
Walter de Gruyter GmbH
Reference15 articles.
1. Avallone, A., Marzario, M., Cirella, A., Piatanesi, A., Rovelli, A., Di Alessandro, C., D’Anastasio, E., D’Agostino, N., Giuliani, R., and Mattone, M. (2011). Very high rate (10 Hz) GPS seismology for moderate-magnitude earthquakes: The case of the Mw 6.3 L’Aquila (central Italy) event. Journal of Geophysical Research: Solid Earth, 116(B2), doi:10.1029/2010JB007834. 2. Baryła, R. and Paziewski, J. (2012). Główne założenia koncepcji badania deformacji terenu na podstawie satelitarnych pomiarów GPS sieci kontrolnej. Biuletyn Wojskowej Akademii Technicznej, 61(2):39–57. 3. Blachowski, J., Milczarek, W., and Cacoń, S. (2010). Project of a rock mass surface deformation monitoring system in the Walbrzych coal basin. Acta Geodynamica et Geomaterialia, 7(3):349–354. 4. Bock, Y., Melgar, D., and Crowell, B. W. (2011). Real-time strong-motion broadband displacements from collocated GPS and accelerometers. Bulletin of the Seismological Society of America, 101(6):2904–2925, doi:10.1785/0120110007. 5. Dawidowicz, K. (2015). Network real-time kinematic approach for normal height determination on ASG-EUPOS system eample. In 15th International Multidisciplinary Scientific Geoconference SGEM 2015, pages 391–398.
|
|