Modeling Electricity Consumption and Production in Smart Homes using LSTM Networks
Author:
Affiliation:
1. Computer Science and Electrical and Electronics Engineering Department, Faculty of Engineering , “Lucian Blaga” University of Sibiu , Romania
Abstract
Publisher
Walter de Gruyter GmbH
Link
https://www.sciendo.com/pdf/10.2478/ijasitels-2020-0009
Reference15 articles.
1. [1] S. Abdulkarim, Time series prediction with simple recurrent neural networks, Bayero Journal of Pure and Applied Sciences, Vol. 9, No. 1, 2016.10.4314/bajopas.v9i1.4
2. [2] C. Fan, F. Xiao, S. Wang, Development of prediction models for next-day building energy consumption and peak power demand using data mining techniques, Applied Energy, Vol. 127, 2014.10.1016/j.apenergy.2014.04.016
3. [3] S. Feilmeier, Loads management based on photovoltaic and energy storage system, M.Sc. Thesis, Lucian Blaga University of Sibiu, 2015.
4. [4] A. Gellert, A. Florea, U. Fiore, F. Palmieri, P. Zanetti, A study on forecasting electricity production and consumption in smart cities and factories, International Journal of Information Management, Elsevier, ISSN 0268-4012, Vol. 49, pp. 546-556, December 2019.10.1016/j.ijinfomgt.2019.01.006
5. [5] A. Gellert, U. Fiore, A. Florea, R. Chis, Forecasting Electricity Consumption and Production in Smart Homes, Submitted to Pervasive and Mobile Computing, November 2020.
Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Electricity consumption forecasting for sustainable smart cities using machine learning methods;Internet of Things;2024-10
2. Estimating electricity consumption at city-level through advanced machine learning methods;Connection Science;2024-02-09
3. Estimating Travel Time for Autonomous Mobile Robots through Long Short-Term Memory;Mathematics;2023-04-04
4. Forecasting Electricity Consumption and Production in Smart Homes through Statistical Methods;Sustainable Cities and Society;2022-01
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3